4coder/platform_all/4ed_work_queues.cpp

427 lines
14 KiB
C++
Raw Normal View History

/*
* Mr. 4th Dimention - Allen Webster
*
* 18.07.2017
*
* Cross platform logic for work queues.
*
*/
// TOP
enum CV_ID{
CANCEL_CV0,
CANCEL_CV1,
CANCEL_CV2,
CANCEL_CV3,
CANCEL_CV4,
CANCEL_CV5,
CANCEL_CV6,
CANCEL_CV7,
CV_COUNT
};
struct Full_Job_Data{
Job_Data job;
u32 running_thread;
u32 id;
};
struct Unbounded_Work_Queue{
Full_Job_Data *jobs;
i32 count, max, skip;
u32 next_job_id;
};
struct Work_Queue{
Full_Job_Data jobs[QUEUE_WRAP];
Semaphore semaphore;
volatile u32 write_position;
volatile u32 read_position;
};
2017-07-18 17:44:54 +00:00
struct Thread_Context{
u32 job_id;
b32 running;
b32 cancel;
Work_Queue *queue;
u32 id;
u32 group_id;
u32 windows_id;
Thread thread;
};
struct Thread_Group{
Thread_Context *threads;
i32 count;
Unbounded_Work_Queue queue;
i32 cancel_lock0;
i32 cancel_cv0;
};
struct Threading_Vars{
Thread_Memory *thread_memory;
Work_Queue queues[THREAD_GROUP_COUNT];
Thread_Group groups[THREAD_GROUP_COUNT];
Mutex locks[LOCK_COUNT];
Condition_Variable conds[CV_COUNT];
};
global Threading_Vars threadvars;
internal
Sys_Acquire_Lock_Sig(system_acquire_lock){
system_acquire_lock(&threadvars.locks[id]);
}
internal
Sys_Release_Lock_Sig(system_release_lock){
system_release_lock(&threadvars.locks[id]);
}
2017-07-18 17:44:54 +00:00
internal
PLAT_THREAD_SIG(job_thread_proc){
Thread_Context *thread = (Thread_Context*)ptr;
Work_Queue *queue = threadvars.queues + thread->group_id;
Thread_Group *group = threadvars.groups + thread->group_id;
i32 thread_index = thread->id - 1;
Thread_Memory *thread_memory = threadvars.thread_memory + thread_index;
i32 cancel_lock_id = group->cancel_lock0 + thread_index;
i32 cancel_cv_id = group->cancel_cv0 + thread_index;
Mutex *cancel_lock = &threadvars.locks[cancel_lock_id];
Condition_Variable *cancel_cv = &threadvars.conds[cancel_cv_id];
if (thread_memory->size == 0){
i32 new_size = KB(64);
thread_memory->data = system_memory_allocate(new_size);
thread_memory->size = new_size;
}
for (;;){
u32 read_index = queue->read_position;
u32 write_index = queue->write_position;
if (read_index != write_index){
u32 next_read_index = (read_index + 1) % QUEUE_WRAP;
u32 safe_read_index = InterlockedCompareExchange(&queue->read_position, next_read_index, read_index);
if (safe_read_index == read_index){
Full_Job_Data *full_job = queue->jobs + safe_read_index;
// NOTE(allen): This is interlocked so that it plays nice
// with the cancel job routine, which may try to cancel this job
// at the same time that we try to run it
i32 safe_running_thread = InterlockedCompareExchange(&full_job->running_thread, thread->id, THREAD_NOT_ASSIGNED);
if (safe_running_thread == THREAD_NOT_ASSIGNED){
thread->job_id = full_job->id;
thread->running = true;
2017-07-18 17:44:54 +00:00
full_job->job.callback(&sysfunc, thread, thread_memory, full_job->job.data);
system_schedule_step();
thread->running = false;
system_acquire_lock(cancel_lock);
if (thread->cancel){
thread->cancel = 0;
system_signal_cv(cancel_cv, cancel_lock);
}
system_release_lock(cancel_lock);
}
}
}
else{
system_wait_on_semaphore(&queue->semaphore);
}
}
}
internal void
initialize_unbounded_queue(Unbounded_Work_Queue *source_queue){
i32 max = 512;
source_queue->jobs = (Full_Job_Data*)system_memory_allocate(max*sizeof(Full_Job_Data));
source_queue->count = 0;
source_queue->max = max;
source_queue->skip = 0;
}
inline i32
get_work_queue_available_space(i32 write, i32 read){
// NOTE(allen): The only time that queue->write_position == queue->read_position
// is allowed is when the queue is empty. Thus if (write_position+1 == read_position)
// the available space is zero. So these computations both end up leaving one slot unused.
// TODO(allen): The only way I can think to easily eliminate this is to have read and write wrap
// at twice the size of the underlying array but modulo their values into the array then if write
// has caught up with read it still will not be equal... but lots of modulos... ehh.
i32 available_space = 0;
if (write >= read){
available_space = QUEUE_WRAP - (write - read) - 1;
}
else{
available_space = (read - write) - 1;
}
return(available_space);
}
#define UNBOUNDED_SKIP_MAX 128
internal i32
flush_thread_group(Thread_Group_ID group_id){
Thread_Group *group = threadvars.groups + group_id;
Work_Queue *queue = threadvars.queues + group_id;
Unbounded_Work_Queue *source_queue = &group->queue;
i32 thread_count = group->count;
// NOTE(allen): It is understood that read_position may be changed by other
// threads but it will only make more space in the queue if it is changed.
// Meanwhile write_position should not ever be changed by anything but the
// main thread in this system, so it will not be interlocked.
u32 read_position = queue->read_position;
u32 write_position = queue->write_position;
u32 available_space = get_work_queue_available_space(write_position, read_position);
u32 available_jobs = source_queue->count - source_queue->skip;
u32 writable_count = Min(available_space, available_jobs);
if (writable_count > 0){
u32 count1 = writable_count;
if (count1+write_position > QUEUE_WRAP){
count1 = QUEUE_WRAP - write_position;
}
u32 count2 = writable_count - count1;
Full_Job_Data *job_src1 = source_queue->jobs + source_queue->skip;
Full_Job_Data *job_src2 = job_src1 + count1;
Full_Job_Data *job_dst1 = queue->jobs + write_position;
Full_Job_Data *job_dst2 = queue->jobs;
Assert((job_src1->id % QUEUE_WRAP) == write_position);
memcpy(job_dst1, job_src1, sizeof(Full_Job_Data)*count1);
memcpy(job_dst2, job_src2, sizeof(Full_Job_Data)*count2);
queue->write_position = (write_position + writable_count) % QUEUE_WRAP;
source_queue->skip += writable_count;
if (source_queue->skip == source_queue->count){
source_queue->skip = source_queue->count = 0;
}
else if (source_queue->skip > UNBOUNDED_SKIP_MAX){
u32 left_over = source_queue->count - source_queue->skip;
memmove(source_queue->jobs, source_queue->jobs + source_queue->skip,
sizeof(Full_Job_Data)*left_over);
source_queue->count = left_over;
source_queue->skip = 0;
}
}
i32 semaphore_release_count = writable_count;
if (semaphore_release_count > thread_count){
semaphore_release_count = thread_count;
}
for (i32 i = 0; i < semaphore_release_count; ++i){
system_release_semaphore(&queue->semaphore);
}
return(semaphore_release_count);
}
// Note(allen): post_job puts the job on the unbounded queue.
// The unbounded queue is entirely managed by the main thread.
// The thread safe queue is bounded in size so the unbounded
// queue is periodically flushed into the direct work queue.
internal
Sys_Post_Job_Sig(system_post_job){
Thread_Group *group = threadvars.groups + group_id;
Unbounded_Work_Queue *queue = &group->queue;
u32 result = queue->next_job_id++;
if (queue->count >= queue->max){
u32 new_max = round_up_pot_u32(queue->count + 1);
Full_Job_Data *new_jobs = (Full_Job_Data*)system_memory_allocate(new_max*sizeof(Full_Job_Data));
memcpy(new_jobs, queue->jobs, queue->count);
system_memory_free(queue->jobs, queue->max*sizeof(Full_Job_Data));
queue->jobs = new_jobs;
queue->max = new_max;
}
Full_Job_Data full_job = {0};
full_job.job = job;
full_job.running_thread = THREAD_NOT_ASSIGNED;
full_job.id = result;
queue->jobs[queue->count++] = full_job;
flush_thread_group(group_id);
return(result);
}
internal
Sys_Cancel_Job_Sig(system_cancel_job){
Thread_Group *group = threadvars.groups + group_id;
Work_Queue *queue = threadvars.queues + group_id;
Unbounded_Work_Queue *source_queue = &group->queue;
b32 handled_in_unbounded = false;
if (source_queue->skip < source_queue->count){
Full_Job_Data *first_job = source_queue->jobs + source_queue->skip;
if (first_job->id <= job_id){
u32 index = source_queue->skip + (job_id - first_job->id);
Full_Job_Data *job = source_queue->jobs + index;
job->running_thread = 0;
handled_in_unbounded = true;
}
}
if (!handled_in_unbounded){
Full_Job_Data *job = queue->jobs + (job_id % QUEUE_WRAP);
Assert(job->id == job_id);
u32 thread_id = InterlockedCompareExchange(&job->running_thread, 0, THREAD_NOT_ASSIGNED);
if (thread_id != THREAD_NOT_ASSIGNED && thread_id != 0){
i32 thread_index = thread_id - 1;
i32 cancel_lock_id = group->cancel_lock0 + thread_index;
i32 cancel_cv_id = group->cancel_cv0 + thread_index;
Mutex *cancel_lock = &threadvars.locks[cancel_lock_id];
Condition_Variable *cancel_cv = &threadvars.conds[cancel_cv_id];
Thread_Context *thread = group->threads + thread_index;
system_acquire_lock(cancel_lock);
thread->cancel = true;
system_release_lock(&threadvars.locks[FRAME_LOCK]);
do{
system_wait_cv(cancel_cv, cancel_lock);
}while (thread->cancel);
system_acquire_lock(&threadvars.locks[FRAME_LOCK]);
system_release_lock(cancel_lock);
}
}
}
internal
Sys_Check_Cancel_Sig(system_check_cancel){
Thread_Group *group = threadvars.groups + thread->group_id;
b32 result = false;
i32 thread_index = thread->id - 1;
i32 cancel_lock_id = group->cancel_lock0 + thread_index;
Mutex *cancel_lock = &threadvars.locks[cancel_lock_id];
system_acquire_lock(cancel_lock);
if (thread->cancel){
result = true;
}
system_release_lock(cancel_lock);
return(result);
}
internal
Sys_Grow_Thread_Memory_Sig(system_grow_thread_memory){
Mutex *cancel_lock = &threadvars.locks[CANCEL_LOCK0 + memory->id - 1];
system_acquire_lock(cancel_lock);
void *old_data = memory->data;
i32 old_size = memory->size;
i32 new_size = l_round_up_i32(memory->size*2, KB(4));
memory->data = system_memory_allocate(new_size);
memory->size = new_size;
if (old_data != 0){
memcpy(memory->data, old_data, old_size);
system_memory_free(old_data, old_size);
}
system_release_lock(cancel_lock);
}
internal
INTERNAL_Sys_Get_Thread_States_Sig(system_internal_get_thread_states){
Thread_Group *group = threadvars.groups + id;
Work_Queue *queue = threadvars.queues + id;
Unbounded_Work_Queue *source_queue = &group->queue;
u32 write = queue->write_position;
u32 read = queue->read_position;
if (write < read){
write += QUEUE_WRAP;
}
*pending = (i32)(write - read) + source_queue->count - source_queue->skip;
for (i32 i = 0; i < group->count; ++i){
running[i] = (group->threads[i].running != 0);
}
}
internal void
work_system_init(){
2017-11-04 05:07:14 +00:00
DBG_POINT();
2017-07-18 20:17:57 +00:00
AssertThreadSizes();
2017-11-04 05:07:14 +00:00
DBG_POINT();
u32 core_count = CORE_COUNT;
i32 thread_system_memory_size = core_count*(sizeof(Thread_Context) + sizeof(Thread_Memory));
void *thread_system_memory = system_memory_allocate(thread_system_memory_size);
Partition thread_part = make_part(thread_system_memory, thread_system_memory_size);
2017-11-04 05:07:14 +00:00
DBG_POINT();
for (i32 i = 0; i < LOCK_COUNT; ++i){
system_init_lock(&threadvars.locks[i]);
}
2017-11-04 05:07:14 +00:00
DBG_POINT();
for (i32 i = 0; i < CV_COUNT; ++i){
system_init_cv(&threadvars.conds[i]);
}
2017-11-04 05:07:14 +00:00
DBG_POINT();
threadvars.thread_memory = push_array(&thread_part, Thread_Memory, core_count);
2017-11-04 05:07:14 +00:00
DBG_POINT();
for (u32 group_i = 0; group_i < THREAD_GROUP_COUNT; ++group_i){
Thread_Context *threads = push_array(&thread_part, Thread_Context, core_count);
threadvars.groups[group_i].threads = threads;
threadvars.groups[group_i].count = core_count;
threadvars.groups[group_i].cancel_lock0 = CANCEL_LOCK0;
threadvars.groups[group_i].cancel_cv0 = CANCEL_CV0;
2017-11-04 05:07:14 +00:00
DBG_POINT();
system_init_semaphore(&threadvars.queues[group_i].semaphore, core_count);
2017-11-04 05:07:14 +00:00
DBG_POINT();
for (u32 i = 0; i < core_count; ++i){
Thread_Context *thread = threads + i;
thread->id = i + 1;
thread->group_id = group_i;
Thread_Memory *memory = &threadvars.thread_memory[i];
memset(memory, 0, sizeof(*memory));
memory->id = thread->id;
thread->queue = &threadvars.queues[group_i];
system_init_and_launch_thread(&thread->thread, job_thread_proc, thread);
}
2017-11-04 05:07:14 +00:00
DBG_POINT();
initialize_unbounded_queue(&threadvars.groups[group_i].queue);
}
}
// BOTTOM