Lumenarium/gs_language.h

401 lines
8.6 KiB
C
Raw Normal View History

2019-07-19 20:56:21 +00:00
#ifndef GS_LANGUAGE_H
#if defined(_WIN32) || defined(_WIN64) || defined(__WIN32__)
#include <windows.h>
#include <intrin.h>
// TODO(Peter): Get rid of stdio and math.h
#include <stdio.h>
#include <math.h>
#elif defined(__APPLE__) && defined(__MAC__)
// TODO(Peter):
#else // Std lib
#include <stdlib.h>
#endif
#define internal static
#define local_persist static
#define global_variable static
#if !defined(GS_TYPES)
#define GSINT64(s) (s) ## L
#define GSUINT64(s) (s) ## UL
typedef signed char b8;
typedef short int b16;
typedef int b32;
typedef long long int b64;
typedef unsigned char u8;
typedef unsigned short int u16;
typedef unsigned int u32;
typedef unsigned long long int u64;
typedef signed char s8;
typedef short int s16;
typedef int s32;
typedef long long int s64;
typedef float r32;
typedef double r64;
#define INT8_MIN (-128)
#define INT16_MIN (-32767-1)
#define INT32_MIN (-2147483647-1)
#define INT64_MIN (-GSINT64(9223372036854775807)-1)
#define INT8_MAX (127)
#define INT16_MAX (32767)
#define INT32_MAX (2147483647)
#define INT64_MAX (GSINT64(9223372036854775807))
#define UINT8_MAX (255)
#define UINT16_MAX (65535)
#define UINT32_MAX (4294967295U)
#define UINT64_MAX (GSUINT64(18446744073709551615))
#define FLOAT_MIN (1.175494351e-38F)
#define FLOAT_MAX (3.402823466e+38F)
#define DOUBLE_MIN (2.2250738585072014e-308)
#define DOUBLE_MAX (1.7976931348623158e+308)
#define Kilobytes(Value) ((Value) * 1024)
#define Megabytes(Value) (Kilobytes(Value) * 1024)
#define Gigabytes(Value) (Megabytes(Value) * 1024)
#define Terabytes(Value) (Gigabytes(Value) * 1024)
#define PI 3.14159265359
#define PI_OVER_180 0.01745329251f
#define GS_TYPES
#endif
#ifdef DEBUG
static void DebugPrint(char* Format, ...);
#if !defined(Assert)
// NOTE(peter): this writes to address 0 which is always illegal and will cause a crash
#define Assert(expression) if(!(expression)){ *((int *)0) = 5; }
#endif
#define DEBUG_IF(condition) if (condition)
#define InvalidCodePath Assert(0)
#define InvalidDefaultCase default: { Assert(0); }
#define DebugBreak __debugbreak()
#define STBI_ASSERT(x) Assert(x)
#ifdef GS_TEST_SUTE
#define TestClean(v, c) SuccessCount += Test(v, c, &TestCount)
internal s32
Test(b32 Result, char* Description, s32* Count)
{
char* Passed = (Result ? "Success" : "Failed");
if (!Result)
DebugPrint("%s:\n................................................%s\n\n", Description, Passed);
*Count = *Count + 1;
return (Result ? 1 : 0);
}
#endif // GS_TEST_SUTE
#else
#define Assert(expression)
#define InvalidCodePath
#define DEBUG_IF(condition)
//#define DEBUG_TRACK_SCOPE(a)
#endif // DEBUG
#ifndef GS_LANGUAGE_MATH
#define GSZeroStruct(data) GSZeroMemory_((u8*)(&(data)), sizeof(data))
#define GSZeroMemory(mem, size) GSZeroMemory_((u8*)(mem), (size))
static void
GSZeroMemory_ (u8* Memory, s32 Size)
{
for (int i = 0; i < Size; i++) { Memory[i] = 0; }
}
#define GSMemCopy(from, to, size) GSMemCopy_((u8*)from, (u8*)to, size)
static void
GSMemCopy_ (u8* From, u8* To, s32 Size)
{
for (int i = 0; i < Size; i++) { To[i] = From[i]; }
}
#define GSMemSet(buffer, value, size) GSMemSet_((u8*)buffer, value, size)
internal void
GSMemSet_ (u8* Buffer, u8 Value, s32 Length)
{
u8* Cursor = Buffer;
for (s32 i = 0; i < Length; i++)
{
*Cursor++ = Value;
}
}
#define GSMinDef(type) static type GSMin(type A, type B) { return (A < B ? A : B); }
GSMinDef(s8)
GSMinDef(s16)
GSMinDef(s32)
GSMinDef(s64)
GSMinDef(u8)
GSMinDef(u16)
GSMinDef(u32)
GSMinDef(u64)
GSMinDef(r32)
GSMinDef(r64)
#undef GSMinDef
#define GSMaxDef(type) static type GSMax(type A, type B) { return (A > B ? A : B); }
GSMaxDef(s8)
GSMaxDef(s16)
GSMaxDef(s32)
GSMaxDef(s64)
GSMaxDef(u8)
GSMaxDef(u16)
GSMaxDef(u32)
GSMaxDef(u64)
GSMaxDef(r32)
GSMaxDef(r64)
#undef GSMaxDef
#define GSClampDef(type) static type GSClamp(type Min, type V, type Max) { \
type Result = V; \
if (V < Min) { Result = Min; } \
if (V > Max) { Result = Max; } \
return Result; \
}
GSClampDef(s8)
GSClampDef(s16)
GSClampDef(s32)
GSClampDef(s64)
GSClampDef(u8)
GSClampDef(u16)
GSClampDef(u32)
GSClampDef(u64)
GSClampDef(r32)
GSClampDef(r64)
#undef GSClampDef
#define GSClamp01Def(type) static type GSClamp01(type V) { \
type Min = 0; type Max = 1; \
type Result = V; \
if (V < Min) { Result = Min; } \
if (V > Max) { Result = Max; } \
return Result; \
}
GSClamp01Def(r32)
GSClamp01Def(r64)
#undef GSClamp01Def
#define GSAbsDef(type) static type GSAbs(type A) { return (A < 0 ? -A : A); }
GSAbsDef(s8)
GSAbsDef(s16)
GSAbsDef(s32)
GSAbsDef(s64)
GSAbsDef(r32)
GSAbsDef(r64)
#undef GSAbsDef
#define GSPowDef(type) static type GSPow(type N, s32 Power) { \
type Result = N; \
for(s32 i = 1; i < Power; i++) { Result *= N; } \
return Result; \
}
GSPowDef(s8)
GSPowDef(s16)
GSPowDef(s32)
GSPowDef(s64)
GSPowDef(u8)
GSPowDef(u16)
GSPowDef(u32)
GSPowDef(u64)
GSPowDef(r32)
GSPowDef(r64)
#undef GSPowDef
#define GSLerpDef(type) type GSLerp(type A, type B, type Percent) { return (A * (1.0f - Percent))+(B * Percent);}
GSLerpDef(r32)
GSLerpDef(r64)
#undef GSLerpDef
static r32 GSSqrt(r32 V)
{
r32 Result = _mm_cvtss_f32(_mm_sqrt_ss(_mm_set_ss(V)));
return Result;
}
#if 0
// TODO(Peter): Need a way to split the input into two f32's to supply to _mm_sqrt_sd
static r64 GSSqrt(r64 V)
{
r64 Result = _mm_cvtsd_f64(_mm_sqrt_sd(_mm_set_sd(V)));
return Result;
}
#endif
static r32 DegreesToRadians (r32 Degrees) { return Degrees * PI_OVER_180; }
static r64 DegreesToRadians (r64 Degrees) { return Degrees * PI_OVER_180; }
#define GSIsPowerOfTwoDef(type) static type IsPowerOfTwo(type V) { return (V & (V - 1)) == 0; }
GSIsPowerOfTwoDef(u8);
GSIsPowerOfTwoDef(u16);
GSIsPowerOfTwoDef(u32);
GSIsPowerOfTwoDef(u64);
#undef GSIsPowerOfTwoDef
#define GSIsOddDef(type) inline type IsOdd(type V) { return (V & 1); }
GSIsOddDef(u8);
GSIsOddDef(u16);
GSIsOddDef(u32);
GSIsOddDef(u64);
GSIsOddDef(s8);
GSIsOddDef(s16);
GSIsOddDef(s32);
GSIsOddDef(s64);
#undef GSIsOddDef
#define GSIntDivideRoundUpDef(type) static type IntegerDivideRoundUp (type A, type B) { r32 Result = (r32)A / (r32)B; Result += .99999f; return (type)Result; }
GSIntDivideRoundUpDef(u8);
GSIntDivideRoundUpDef(u16);
GSIntDivideRoundUpDef(u32);
GSIntDivideRoundUpDef(u64);
GSIntDivideRoundUpDef(s8);
GSIntDivideRoundUpDef(s16);
GSIntDivideRoundUpDef(s32);
GSIntDivideRoundUpDef(s64);
#undef GSIntDivideRoundUpDef
#define GSTrigFunctionDef(name, type, func) static type name(type V) { return func(V); }
GSTrigFunctionDef(GSSin, r32, sinf);
GSTrigFunctionDef(GSSin, r64, sin);
GSTrigFunctionDef(GSCos, r32, cosf);
GSTrigFunctionDef(GSCos, r64, cos);
GSTrigFunctionDef(GSTan, r32, tanf);
GSTrigFunctionDef(GSTan, r64, tan);
#undef GSTrigFunctionDef
static u8
RoundToNearestPowerOfTwo (u8 V)
{
u8 Result = 0;
if (IsPowerOfTwo(V))
{
Result = V;
}
else
{
Result = V - 1;
Result |= Result >> 1;
Result |= Result >> 2;
Result |= Result >> 4;
Result += 1;
}
return Result;
}
static u16
RoundToNearestPowerOfTwo (u16 V)
{
u16 Result = 0;
if (IsPowerOfTwo(V))
{
Result = V;
}
else
{
Result = V - 1;
Result |= Result >> 1;
Result |= Result >> 2;
Result |= Result >> 4;
Result |= Result >> 8;
Result += 1;
}
return Result;
}
static u32
RoundToNearestPowerOfTwo (u32 V)
{
u32 Result = 0;
if (IsPowerOfTwo(V))
{
Result = V;
}
else
{
Result = V - 1;
Result |= Result >> 1;
Result |= Result >> 2;
Result |= Result >> 4;
Result |= Result >> 8;
Result |= Result >> 16;
Result += 1;
}
return Result;
}
static u64
RoundToNearestPowerOfTwo (u64 V)
{
u64 Result = 0;
if (IsPowerOfTwo(V))
{
Result = V;
}
else
{
Result = V - 1;
Result |= Result >> 1;
Result |= Result >> 2;
Result |= Result >> 4;
Result |= Result >> 8;
Result |= Result >> 16;
Result |= Result >> 32;
Result += 1;
}
return Result;
}
#define GS_LANGUAGE_MATH
#endif // GS_LANGUAGE_MATH
static u32
HostToNetU32(u32 In)
{
unsigned char *s = (unsigned char *)&In;
u32 Result = (u32)(s[0] << 24 | s[1] << 16 | s[2] << 8 | s[3]);
return Result;
}
static u16
HostToNetU16(u16 In)
{
unsigned char *s = (unsigned char *)&In;
u16 Result = (u16)(s[0] << 8 | s[1]);
return Result;
}
#define GS_LANGUAGE_H
#endif