imported gs_memory_arena.h which is an improved rewrite of gs_memory.h. Integrated this new library in place of gs_memory.h

This commit is contained in:
Peter Slattery 2019-12-22 17:47:26 -08:00
parent 4d9f28dc6e
commit dbc3886e91
13 changed files with 689 additions and 591 deletions

View File

@ -122,12 +122,10 @@ SACNSendDMXBufferListJob (s32 ThreadID, void* JobData)
internal void
LoadAssembly (app_state* State, context Context, char* Path)
{
arena_snapshot TempMemorySnapshot = TakeSnapshotOfArena(*State->Transient);
platform_memory_result TestAssemblyFile = Context.PlatformReadEntireFile(Path);
Assert(TestAssemblyFile.Size > 0);
assembly_definition AssemblyDefinition = ParseAssemblyFile(TestAssemblyFile.Base, TestAssemblyFile.Size, State->Transient);
assembly_definition AssemblyDefinition = ParseAssemblyFile(TestAssemblyFile.Base, TestAssemblyFile.Size, &State->Transient);
Context.PlatformFree(TestAssemblyFile.Base, TestAssemblyFile.Size);
@ -136,21 +134,19 @@ LoadAssembly (app_state* State, context Context, char* Path)
string FileName = Substring(PathString, IndexOfLastSlash + 1);
r32 Scale = 100;
s32 AssemblyMemorySize = GetAssemblyMemorySizeFromDefinition(AssemblyDefinition, FileName);
u8* AssemblyMemory = Context.PlatformAlloc(AssemblyMemorySize);
memory_arena AssemblyArena = {};
AssemblyArena.Alloc = (gs_memory_alloc*)Context.PlatformAlloc;
AssemblyArena.Realloc = (gs_memory_realloc*)Context.PlatformRealloc;
assembly NewAssembly = ConstructAssemblyFromDefinition(AssemblyDefinition,
FileName,
v3{0, 0, 0},
Scale,
AssemblyMemory,
AssemblyMemorySize);
AssemblyArena);
array_entry_handle NewAssemblyHandle = PushElement(NewAssembly, &State->AssemblyList);
PushElement(NewAssemblyHandle, &State->ActiveAssemblyIndecies);
State->TotalLEDsCount += NewAssembly.LEDCount;
ClearArenaToSnapshot(State->Transient, TempMemorySnapshot);
}
internal void
@ -158,7 +154,7 @@ UnloadAssembly (s32 AssemblyIndex, app_state* State, context Context)
{
assembly* Assembly = GetElementAtIndex(AssemblyIndex, State->AssemblyList);
State->TotalLEDsCount -= Assembly->LEDCount;
Context.PlatformFree(Assembly->Arena.Base, Assembly->Arena.Size);
FreeMemoryArena(&Assembly->Arena, (gs_memory_free*)Context.PlatformFree);
RemoveElementAtIndex(AssemblyIndex, &State->AssemblyList);
for (s32 i = 0; i < State->ActiveAssemblyIndecies.Used; i++)
@ -193,27 +189,22 @@ RELOAD_STATIC_DATA(ReloadStaticData)
INITIALIZE_APPLICATION(InitializeApplication)
{
app_state* State = (app_state*)Context.MemoryBase;
u8* MemoryCursor = Context.MemoryBase + sizeof(app_state);
s32 PermanentStorageSize = Context.MemorySize; //Megabytes(32);
//s32 TransientStorageSize = Context.MemorySize - PermanentStorageSize;
State->Permanent = BootstrapArenaIntoMemory(MemoryCursor, PermanentStorageSize);
//State->Transient = BootstrapArenaIntoMemory(MemoryCursor + PermanentStorageSize, TransientStorageSize);
State->Permanent = {};
State->Permanent.Alloc = (gs_memory_alloc*)Context.PlatformAlloc;
State->Permanent.Realloc = (gs_memory_realloc*)Context.PlatformRealloc;
State->Transient = {};
State->Transient.Alloc = (gs_memory_alloc*)Context.PlatformAlloc;
State->Transient.Realloc = (gs_memory_realloc*)Context.PlatformRealloc;
u8* TransientMemory = Context.PlatformAlloc(Megabytes(32));
InitMemoryArena(&State->TransientMemory, TransientMemory, Megabytes(32), Context.PlatformAlloc);
State->Transient = &State->TransientMemory;
InitMemoryArena(&State->SACNMemory, 0, 0, Context.PlatformAlloc);
InitializeInputCommandRegistry(&State->DefaultInputCommandRegistry, 32, State->Permanent);
InitializeInputCommandRegistry(&State->DefaultInputCommandRegistry, 32, &State->Permanent);
s32 CommandQueueSize = 32;
command_queue_entry* CommandQueueMemory = PushArray(State->Permanent,
command_queue_entry* CommandQueueMemory = PushArray(&State->Permanent,
command_queue_entry,
CommandQueueSize);
State->CommandQueue = InitializeCommandQueue(CommandQueueMemory, CommandQueueSize);
State->ActiveTextEntry.Buffer = MakeString(PushArray(State->Permanent, char, 256), 0, 256);
State->ActiveTextEntry.Buffer = MakeString(PushArray(&State->Permanent, char, 256), 0, 256);
// TODO(Peter): put in InitializeInterface?
r32 FontSize = 14;
@ -221,12 +212,12 @@ INITIALIZE_APPLICATION(InitializeApplication)
platform_memory_result FontFile = Context.PlatformReadEntireFile("Anonymous Pro.ttf");
if (FontFile.Size)
{
bitmap_font* Font = PushStruct(State->Permanent, bitmap_font);
bitmap_font* Font = PushStruct(&State->Permanent, bitmap_font);
Font->BitmapWidth = 512;
Font->BitmapHeight = 512;
Font->BitmapBytesPerPixel = 4;
Font->BitmapMemory = PushArray(State->Permanent, u8, Font->BitmapWidth * Font->BitmapHeight * Font->BitmapBytesPerPixel);
Font->BitmapMemory = PushArray(&State->Permanent, u8, Font->BitmapWidth * Font->BitmapHeight * Font->BitmapBytesPerPixel);
Font->BitmapStride = Font->BitmapWidth * Font->BitmapBytesPerPixel;
GSMemSet(Font->BitmapMemory, 0, Font->BitmapStride * Font->BitmapHeight);
@ -239,8 +230,8 @@ INITIALIZE_APPLICATION(InitializeApplication)
Font->CodepointDictionarySize = (FontInfo.CodepointOnePastLast - FontInfo.CodepointStart);
Font->CodepointDictionaryCount = 0;
Font->CodepointKeys = PushArray(State->Permanent, char, Font->CodepointDictionarySize);
Font->CodepointValues = PushArray(State->Permanent, codepoint_bitmap, Font->CodepointDictionarySize);
Font->CodepointKeys = PushArray(&State->Permanent, char, Font->CodepointDictionarySize);
Font->CodepointValues = PushArray(&State->Permanent, codepoint_bitmap, Font->CodepointDictionarySize);
for (s32 Codepoint = FontInfo.CodepointStart;
Codepoint < FontInfo.CodepointOnePastLast;
@ -296,7 +287,7 @@ INITIALIZE_APPLICATION(InitializeApplication)
State->AssemblyList.FreeList.Next = &State->AssemblyList.FreeList;
State->ActiveAssemblyIndecies.BucketSize = 32;
#if 1
char Path[] = "blumen_lumen.fold";
char Path[] = "radialumia.fold";
LoadAssembly(State, Context, Path);
#endif
@ -308,10 +299,10 @@ INITIALIZE_APPLICATION(InitializeApplication)
{ // MODES PLAYGROUND
State->Modes.ActiveModesCount = 0;
s32 ModesMemorySize = Kilobytes(32);
u8* ModesMemory = PushSize(State->Permanent, ModesMemorySize);
InitMemoryArena(&State->Modes.Arena, ModesMemory, ModesMemorySize, 0);
State->Modes.Arena = {};
State->Modes.Arena.Alloc = (gs_memory_alloc*)Context.PlatformAlloc;
State->Modes.Arena.Realloc = (gs_memory_realloc*)Context.PlatformRealloc;
State->Modes.Arena.FindAddressRule = FindAddress_InLastBufferOnly;
}
}
@ -413,7 +404,7 @@ UPDATE_AND_RENDER(UpdateAndRender)
// and need to persist beyond the end of the UpdateAndRender call. In the release version, we won't
// zero the Transient arena when we clear it so it wouldn't be a problem, but it is technically
// incorrect to clear the arena, and then access the memory later.
ClearArena(State->Transient);
ClearArena(&State->Transient);
HandleInput(State, InputQueue, Mouse);
@ -515,7 +506,7 @@ UPDATE_AND_RENDER(UpdateAndRender)
{
array_entry_handle AssemblyHandle = *GetElementAtIndex(i, State->ActiveAssemblyIndecies);
assembly Assembly = *GetElementWithHandle(AssemblyHandle, State->AssemblyList);
dmx_buffer_list* NewDMXBuffers = CreateDMXBuffers(Assembly, HeaderSize, State->Transient);
dmx_buffer_list* NewDMXBuffers = CreateDMXBuffers(Assembly, HeaderSize, &State->Transient);
DMXBuffers = DMXBufferListAppend(DMXBuffers, NewDMXBuffers);
}
@ -535,7 +526,7 @@ UPDATE_AND_RENDER(UpdateAndRender)
CurrentDMXBuffer = CurrentDMXBuffer->Next;
}
send_sacn_job_data* Job = PushStruct(State->Transient, send_sacn_job_data);
send_sacn_job_data* Job = PushStruct(&State->Transient, send_sacn_job_data);
Job->SendSocket = State->SACN.SendSocket;
Job->SendTo = Context.PlatformSendTo;
Job->DMXBuffers = DMXBuffers;
@ -584,7 +575,7 @@ UPDATE_AND_RENDER(UpdateAndRender)
for (s32 Job = 0; Job < JobsNeeded; Job++)
{
draw_leds_job_data* JobData = PushStruct(State->Transient, draw_leds_job_data);
draw_leds_job_data* JobData = PushStruct(&State->Transient, draw_leds_job_data);
JobData->LEDs = Assembly.LEDs;
JobData->Colors = Assembly.Colors;
JobData->StartIndex = Job * MaxLEDsPerJob;
@ -630,7 +621,7 @@ UPDATE_AND_RENDER(UpdateAndRender)
MakeStringLiteral("Load Assembly"),
State->Interface, Mouse);
string InterfaceString = MakeString(PushArray(State->Transient, char, 256), 256);
string InterfaceString = MakeString(PushArray(&State->Transient, char, 256), 256);
for (s32 i = 0; i < State->ActiveAssemblyIndecies.Used; i++)
{
array_entry_handle AssemblyHandle = *GetElementAtIndex(i, State->ActiveAssemblyIndecies);
@ -669,7 +660,18 @@ UPDATE_AND_RENDER(UpdateAndRender)
DrawDebugInterface(RenderBuffer, 25,
State->Interface, Context.WindowWidth, Context.WindowHeight - TopBarHeight,
Context.DeltaTime, State, State->Camera, Mouse, State->Transient);
Context.DeltaTime, State, State->Camera, Mouse, &State->Transient);
}
// Checking for overflows
{
DEBUG_TRACK_SCOPE(OverflowChecks);
AssertAllocationsNoOverflow(State->Permanent);
for (s32 i = 0; i < State->AssemblyList.Used; i++)
{
assembly* Assembly = GetElementAtIndex(i, State->AssemblyList);
AssertAllocationsNoOverflow(Assembly->Arena);
}
}
}

View File

@ -35,10 +35,8 @@ enum network_protocol
struct app_state
{
memory_arena* Permanent;
memory_arena TransientMemory;
memory_arena* Transient;
memory_arena SACNMemory;
memory_arena Permanent;
memory_arena Transient;
s32 NetworkProtocolHeaderSize;
network_protocol NetworkProtocol;

View File

@ -12,11 +12,10 @@ ConstructAssemblyFromDefinition (assembly_definition Definition,
string AssemblyName,
v3 RootPosition,
r32 Scale,
u8* MemoryBase,
s32 MemorySize)
memory_arena Arena)
{
assembly Assembly = {};
Assembly.Arena = CreateMemoryArena(MemoryBase, MemorySize);
Assembly.Arena = Arena;
Assembly.Name = MakeString(PushArray(&Assembly.Arena, char, AssemblyName.Length), AssemblyName.Length);
CopyStringTo(AssemblyName, &Assembly.Name);

View File

@ -24,7 +24,7 @@ struct leds_in_universe_range
struct assembly
{
static_memory_arena Arena;
memory_arena Arena;
string Name;
string FilePath;

View File

@ -197,7 +197,7 @@ DrawDebugInterface (render_command_buffer* RenderBuffer, r32 StartX, interface_c
v2 TopOfDebugView = v2{StartX, WindowHeight - (NewLineYOffset(*Interface.Font) + 5)};
v2 TopOfScreenLinePos = TopOfDebugView;
arena_snapshot StartTempMemory = TakeSnapshotOfArena(*Transient);
//arena_snapshot StartTempMemory = TakeSnapshotOfArena(*Transient);
string DebugString = InitializeEmptyString(PushArray(Transient, char, 256), 256);
@ -215,8 +215,8 @@ DrawDebugInterface (render_command_buffer* RenderBuffer, r32 StartX, interface_c
5, DeltaTime,
(u32)FramesPerSecond,
State->Modes.ActiveModesCount,
State->Modes.Arena.CurrentRegion->Used,
State->Modes.Arena.CurrentRegion->Size,
State->Modes.Arena.TotalUsed,
State->Modes.Arena.TotalSize,
State->CommandQueue.Used);
DrawString(RenderBuffer, DebugString, Interface.Font, TopOfScreenLinePos, WhiteV4);
@ -356,7 +356,4 @@ DrawDebugInterface (render_command_buffer* RenderBuffer, r32 StartX, interface_c
}
#endif
}
ZeroArenaToSnapshot(Transient, StartTempMemory);
ClearArenaToSnapshot(Transient, StartTempMemory);
}

View File

@ -1,5 +1,6 @@
#ifndef GS_MEMORY_H
#if 0
#ifndef GS_LANGUAGE_H
typedef uint8_t u8;
@ -230,6 +231,7 @@ ClearArenaToSnapshot (memory_arena* Arena, arena_snapshot Snapshot)
Assert(RegionCursor == Snapshot.CurrentRegion);
RegionCursor->Used = Snapshot.UsedAtSnapshot;
}
#endif
//
// Basic Memory Arena
@ -253,6 +255,7 @@ CreateMemoryArena (u8* Base, u32 Size)
return Result;
}
#define PushArrayOnStaticArena(arena, type, length) (type*)PushSize_((arena), sizeof(type) * length)
static u8*
PushSize_ (static_memory_arena* Arena, u32 Size)
{
@ -262,80 +265,5 @@ PushSize_ (static_memory_arena* Arena, u32 Size)
return Result;
}
//
// Tracked Array Implementation
//
#define ARRAY_CHECKSUM 0x51bada7b
struct array_header_
{
u32 Size;
s32 ElementMax;
s32 ElementCount;
s32 ElementSize;
u32 Checksum;
};
#define gs_PushArray(arena, type, size) (type*)gs_PushArray_(arena, sizeof(type), size)
static u8*
gs_PushArray_ (memory_arena* Arena, u32 StepSize, u32 Count)
{
u32 ArrayFootprint = sizeof(array_header_) + (StepSize * Count);
array_header_* Header = (array_header_*)PushSize_(Arena, ArrayFootprint);
array_header_* Body = Header + 1;
u8* Result = (u8*)(Body);
Header->Size = Count * StepSize;
Header->ElementMax = Count;
Header->ElementSize = StepSize;
Header->ElementCount = 0;
Header->Checksum = ARRAY_CHECKSUM;
return Result;
}
#define gs_ArrayHeader_(array) (((array_header_*)array) - 1)
#ifdef DEBUG
#define gs_ArrayCheck(array) Assert(!array || gs_ArrayHeader_(array)->Checksum == ARRAY_CHECKSUM)
#else
#define gs_ArrayCheck(array)
#endif
#define gs_ArrayCount(array) gs_ArrayCount_((u8*)array)
static s32
gs_ArrayCount_ (u8* Base)
{
gs_ArrayCheck(Base);
return gs_ArrayHeader_(Base)->ElementCount;
}
#define gs_ArrayMax(array) gs_ArrayMax_((u8*)array)
static s32
gs_ArrayMax_ (u8* Base)
{
gs_ArrayCheck(Base);
return gs_ArrayHeader_(Base)->ElementMax;
}
#define gs_ArrayAdd(array) ( gs_PushArrayElement_((u8*)array), (array) + (gs_ArrayCount(array) - 1) )
#define gs_ArrayPush(array, ele) *( gs_ArrayAdd(array) ) = (ele)
static void*
gs_PushArrayElement_ (u8* Base)
{
gs_ArrayCheck(Base);
Assert(gs_ArrayHeader_(Base)->ElementCount + 1 <= gs_ArrayHeader_(Base)->ElementMax);
void* Result = (void*)(Base + (gs_ArrayHeader_(Base)->ElementCount * gs_ArrayHeader_(Base)->ElementSize));
gs_ArrayHeader_(Base)->ElementCount++;
return Result;
}
#define GS_MEMORY_H
#endif // GS_MEMORY_H

View File

@ -28,7 +28,7 @@ ActivateOperationMode (operation_mode_system* System)
Assert(System->ActiveModesCount < OPERATION_MODES_MAX);
s32 ModeIndex = System->ActiveModesCount++;
System->ModeMemorySnapshots[ModeIndex] = TakeSnapshotOfArena(System->Arena);
System->ModeMemorySnapshots[ModeIndex] = TakeSnapshotOfArena(&System->Arena);
operation_mode NewMode = {};
System->ActiveModes[ModeIndex] = NewMode;

View File

@ -3,6 +3,11 @@
#include "gs_array.h"
#include "foldhaus_memory.h"
#define GS_MEMORY_TRACK_ALLOCATIONS
#define GS_MEMORY_NO_STD_LIBS
#include "gs_memory_arena.h"
#include "gs_string.h"
#include "foldhaus_debug.h"
@ -133,6 +138,7 @@ struct context
platform_alloc* PlatformAlloc;
platform_free* PlatformFree;
platform_realloc* PlatformRealloc;
platform_read_entire_file* PlatformReadEntireFile;
platform_write_entire_file* PlatformWriteEntireFile;
platform_get_file_path* PlatformGetFilePath;

View File

@ -1,461 +0,0 @@
#ifndef GS_MEMORY_H
#define ArenaZeroStruct(data_ptr) ArenaZeroStruct_((u8*)data_ptr, sizeof(*data_ptr))
inline void
ArenaZeroStruct_ (u8* Base, s32 Size)
{
u8* Iter = Base;
for (s32 i = 0; i < Size; i++) { *Iter++ = 0; }
}
struct grow_arena_result
{
u8* Base;
s32 Size;
};
#define GROW_ARENA_MEMORY(name) grow_arena_result name(s32 Size)
typedef GROW_ARENA_MEMORY(grow_arena_memory);
#define FREE_ARENA_MEMORY(name) b32 name(u8* Base, s32 Size)
typedef FREE_ARENA_MEMORY(free_arena_memory);
struct memory_region_header
{
memory_region_header* Prev;
s32 Size;
s32 Used;
u8* Base;
};
inline b32
RegionCanFitSize (memory_region_header* Header, s32 Size)
{
b32 Result = (Header->Used + Size) <= Header->Size;
return Result;
}
inline b32
AddressIsInRegion (memory_region_header* Header, u8* Address)
{
b32 Result = (Header->Base <= Address) && (Header->Base + Header->Used > Address);
return Result;
}
#ifndef DEFAULT_MEMORY_ALIGNMENT
#define DEFAULT_MEMORY_ALIGNMENT (2 * sizeof(void*))
#endif
b32 GSMemIsPowerOfTwo (u64 Address)
{
return (Address & (Address - 1)) == 0;
}
u64 AlignForward (u64 Base, u64 Align)
{
u64 P, A, Modulo;
Assert(GSMemIsPowerOfTwo(Align));
P = Base;
A = Align;
Modulo = P & (A - 1);
if (Modulo != 0)
{
P = P + (A - Modulo);
}
return P;
}
//////////////////////////////
// Heap Memory
//////////////////////////////
// heap_memory_arena
// a growable memory arena that has two ways to interact with it: push and clear.
// Push: returns a free region of continguous memory. If the arenas GrowArenaProc function is set, this may
// get called in order to obtain enough free memory to fulfil the push request
// Clear: clears the entire memory arena. If the arena has been grown at any point, those subsequent
// regions of memory will be freed back to the system.
struct heap_memory_arena
{
memory_region_header* CurrentRegion;
s32 RegionMemorySize;
grow_arena_memory* GrowArenaProc;
free_arena_memory* FreeArenaMemoryProc;
};
static void
GrowHeapArena (heap_memory_arena* Arena, s32 RequestedSize)
{
if (Arena->GrowArenaProc)
{
Assert(Arena->RegionMemorySize > 0);
s32 GrowthSize = GSMax(RequestedSize, Arena->RegionMemorySize);
grow_arena_result NewMemory = Arena->GrowArenaProc(GrowthSize + sizeof(memory_region_header));
Assert(NewMemory.Size > 0);
memory_region_header* Header = (memory_region_header*)NewMemory.Base;
Header->Base = (u8*)NewMemory.Base + sizeof(memory_region_header);
Header->Size = NewMemory.Size - sizeof(memory_region_header);
Header->Used = 0;
Header->Prev = Arena->CurrentRegion;
Arena->CurrentRegion = Header;
}
else
{
InvalidCodePath;
}
}
#define PushStruct(arena, type) (type*)PushSize_(arena, sizeof(type))
#define PushArray(arena, type, count) (type*)PushSize_(arena, sizeof(type)*count)
static u8*
PushSize_ (heap_memory_arena* Arena, s32 Size)
{
if (!Arena->CurrentRegion) { GrowHeapArena(Arena, Size); }
u8* CurrPointer = Arena->CurrentRegion->Base + Arena->CurrentRegion->Used;
u64 Offset = AlignForward((u64)CurrPointer, DEFAULT_MEMORY_ALIGNMENT);
Offset -= (u64)(Arena->CurrentRegion->Base + Arena->CurrentRegion->Used);
if (!RegionCanFitSize(Arena->CurrentRegion, Size + Offset))
{
// TODO(Peter): There might be empty space in the current region, its just not big enough for the
// requested size. We should search backwards to see if there is enough space in a previous region
// before growing the arena.
GrowHeapArena(Arena, Size + Offset);
}
u8* Result = Arena->CurrentRegion->Base + Arena->CurrentRegion->Used + Offset;
Arena->CurrentRegion->Used += Size + Offset;
GSZeroMemory(Result, Size);
return Result;
}
static void
InitHeapMemoryArena (heap_memory_arena* Arena, s32 RegionMemorySize,
grow_arena_memory* GrowProc, free_arena_memory* FreeProc)
{
ArenaZeroStruct(Arena);
Arena->RegionMemorySize = RegionMemorySize;
Arena->GrowArenaProc = GrowProc;
Arena->FreeArenaMemoryProc = FreeProc;
}
static void
InitHeapMemoryArena (heap_memory_arena* Arena, u8* Base, s32 Size,
s32 RegionMemorySize = 0,
grow_arena_memory* GrowProc = 0,
free_arena_memory* FreeProc = 0)
{
Assert(Size > sizeof(memory_region_header));
Arena->CurrentRegion = (memory_region_header*)Base;
Arena->CurrentRegion->Base = Base + sizeof(memory_region_header);
Arena->CurrentRegion->Size = Size - sizeof(memory_region_header);
Arena->CurrentRegion->Used = 0;
Arena->CurrentRegion->Prev = 0;
Arena->RegionMemorySize = RegionMemorySize;
Arena->GrowArenaProc = GrowProc;
Arena->FreeArenaMemoryProc = FreeProc;
}
static void
ClearHeapMemoryArena (heap_memory_arena* Arena)
{
if (!Arena->CurrentRegion) { return; }
memory_region_header* CurrentHead = Arena->CurrentRegion;
if (CurrentHead->Prev)
{
Assert(Arena->FreeArenaMemoryProc);
while(CurrentHead->Prev)
{
memory_region_header* PrevHead = CurrentHead->Prev;
Arena->FreeArenaMemoryProc((u8*)CurrentHead, CurrentHead->Size + sizeof(memory_region_header));
CurrentHead = PrevHead;
}
Arena->CurrentRegion = CurrentHead;
}
Arena->CurrentRegion->Used = 0;
}
//////////////////////////////
// Stack Memory
//////////////////////////////
struct stack_memory_region
{
stack_memory_region* Prev;
};
// stack_memory_arena
// Push: returns a free region of continguous memory. If the arenas GrowArenaProc function is set, this may
// get called in order to obtain enough free memory to fulfil the push request
// Pop: frees the last region allocated on the stack, returning it to the region of memory available to
// be used.
// Clear: clears the entire memory arena. If the arena has been grown at any point, those subsequent
// regions of memory will be freed back to the system.
struct stack_memory_arena
{
memory_region_header* CurrentRegion;
stack_memory_region* UsedList;
s32 RegionMemorySize;
grow_arena_memory* GrowArenaProc;
free_arena_memory* FreeArenaMemoryProc;
};
static u8*
PushSize_ (stack_memory_arena* Arena, s32 Size)
{
if (!Arena->CurrentRegion ||
!RegionCanFitSize(Arena->CurrentRegion, Size))
{
if (Arena->GrowArenaProc)
{
Assert(Arena->RegionMemorySize > 0);
grow_arena_result NewMemory = Arena->GrowArenaProc(Arena->RegionMemorySize + sizeof(memory_region_header));
Assert(NewMemory.Size > 0);
memory_region_header* Header = (memory_region_header*)NewMemory.Base;
Header->Base = (u8*)NewMemory.Base + sizeof(memory_region_header);
Header->Size = NewMemory.Size - sizeof(memory_region_header);
Header->Used = 0;
Header->Prev = Arena->CurrentRegion;
Arena->CurrentRegion = Header;
}
else
{
InvalidCodePath;
}
}
u8* Region = Arena->CurrentRegion->Base + Arena->CurrentRegion->Used;
stack_memory_region* UsedListHeader = (stack_memory_region*)Region;
UsedListHeader->Prev = Arena->UsedList;
Arena->UsedList = UsedListHeader;
u8* Result = Region + sizeof(stack_memory_region);
Arena->CurrentRegion->Used += Size + sizeof(stack_memory_region);
return Result;
}
// NOTE(Peter): Returns size available after the Pop operation
static s32
PopLast (stack_memory_arena* Arena)
{
s32 Result = Arena->CurrentRegion->Size - Arena->CurrentRegion->Used;
if (Arena->UsedList)
{
u8* LastHead = (u8*)Arena->UsedList;
if (!AddressIsInRegion(Arena->CurrentRegion, LastHead) &&
Arena->FreeArenaMemoryProc)
{
memory_region_header* PrevHeader = Arena->CurrentRegion->Prev;
Arena->FreeArenaMemoryProc((u8*)Arena->CurrentRegion,
Arena->CurrentRegion->Size + sizeof(memory_region_header));
Arena->CurrentRegion = PrevHeader;
}
Assert(LastHead >= Arena->CurrentRegion->Base &&
LastHead <= Arena->CurrentRegion->Base + Arena->CurrentRegion->Size);
stack_memory_region* PrevAlloc = Arena->UsedList->Prev;
s32 SizeUsed = LastHead - Arena->CurrentRegion->Base;
Arena->CurrentRegion->Used = SizeUsed;
Result = Arena->CurrentRegion->Size - Arena->CurrentRegion->Used;
Arena->UsedList = PrevAlloc;
}
return Result;
}
static void
InitStackMemoryArena (stack_memory_arena* Arena, s32 RegionMemorySize,
grow_arena_memory* GrowProc, free_arena_memory* FreeProc)
{
ArenaZeroStruct(Arena);
Arena->RegionMemorySize = RegionMemorySize;
Arena->GrowArenaProc = GrowProc;
Arena->FreeArenaMemoryProc = FreeProc;
}
static void
InitStackMemoryArena (stack_memory_arena* Arena, u8* Base, s32 Size,
s32 RegionMemorySize = 0,
grow_arena_memory* GrowProc = 0,
free_arena_memory* FreeProc = 0)
{
Assert(Size > sizeof(memory_region_header));
Arena->CurrentRegion = (memory_region_header*)Base;
Arena->CurrentRegion->Base = Base + sizeof(memory_region_header);
Arena->CurrentRegion->Size = Size - sizeof(memory_region_header);
Arena->CurrentRegion->Used = 0;
Arena->CurrentRegion->Prev = 0;
Arena->RegionMemorySize = RegionMemorySize;
Arena->GrowArenaProc = GrowProc;
Arena->FreeArenaMemoryProc = FreeProc;
}
static void
ClearStackMemoryArena (stack_memory_arena* Arena)
{
if (!Arena->CurrentRegion) { return; }
memory_region_header* CurrentHead = Arena->CurrentRegion;
if (CurrentHead->Prev)
{
Assert(Arena->FreeArenaMemoryProc);
while(CurrentHead->Prev)
{
memory_region_header* PrevHead = CurrentHead->Prev;
Arena->FreeArenaMemoryProc((u8*)CurrentHead, CurrentHead->Size + sizeof(memory_region_header));
CurrentHead = PrevHead;
}
Arena->CurrentRegion = CurrentHead;
}
Arena->CurrentRegion->Used = 0;
Arena->UsedList = 0;
}
//////////////////////////////
// Pool Memory
//////////////////////////////
struct chunk_header
{
chunk_header* Prev;
};
struct pool_memory_arena
{
memory_region_header* CurrentRegion;
s32 ChunkSize;
chunk_header* FreeList;
s32 RegionMemorySize;
grow_arena_memory* GrowArenaProc;
free_arena_memory* FreeArenaMemoryProc;
};
struct chunk_result
{
s32 Size;
u8* Base;
};
static chunk_result
PushChunk (pool_memory_arena* Arena)
{
chunk_result Result = {};
if (Arena->FreeList)
{
Result.Base = (u8*)Arena->FreeList;
Result.Size = Arena->ChunkSize;
Arena->FreeList = Arena->FreeList->Prev;
}
else
{
if (!RegionCanFitSize(Arena->CurrentRegion, Arena->ChunkSize))
{
if (Arena->GrowArenaProc)
{
grow_arena_result NewMemory = Arena->GrowArenaProc(Arena->RegionMemorySize + sizeof(memory_region_header));
Assert(NewMemory.Size > 0);
memory_region_header* Header = (memory_region_header*)NewMemory.Base;
Header->Base = (u8*)NewMemory.Base + sizeof(memory_region_header);
Header->Size = NewMemory.Size - sizeof(memory_region_header);
Header->Used = 0;
Header->Prev = Arena->CurrentRegion;
Arena->CurrentRegion = Header;
}
else
{
InvalidCodePath;
}
}
Result.Base = Arena->CurrentRegion->Base + Arena->CurrentRegion->Used;
Result.Size = Arena->ChunkSize;
Arena->CurrentRegion->Used += Arena->ChunkSize;
}
return Result;
}
static void
FreeChunk (pool_memory_arena* Arena, u8* Base, s32 Size)
{
Assert(Arena->ChunkSize == Size);
chunk_header* Header = (chunk_header*)Base;
Header->Prev = Arena->FreeList;
Arena->FreeList = Header;
}
static void
InitPoolMemoryArena (pool_memory_arena* Arena, s32 ChunkSize, s32 ChunksPerRegion,
grow_arena_memory* GrowProc, free_arena_memory* FreeProc)
{
Assert(ChunkSize > sizeof(chunk_header));
ArenaZeroStruct(Arena);
Arena->ChunkSize = ChunkSize;
Arena->RegionMemorySize = ChunkSize * ChunksPerRegion;
Arena->GrowArenaProc = GrowProc;
Arena->FreeArenaMemoryProc = FreeProc;
}
static void
InitStackMemoryArena (pool_memory_arena* Arena, u8* Base, s32 Size,
s32 ChunkSize, s32 ChunksPerRegion,
grow_arena_memory* GrowProc = 0,
free_arena_memory* FreeProc = 0)
{
Assert(Size > sizeof(memory_region_header));
Assert(Size % ChunkSize == ChunksPerRegion);
Arena->CurrentRegion = (memory_region_header*)Base;
Arena->CurrentRegion->Base = Base + sizeof(memory_region_header);
Arena->CurrentRegion->Size = Size - sizeof(memory_region_header);
Arena->CurrentRegion->Used = 0;
Arena->CurrentRegion->Prev = 0;
Arena->ChunkSize = ChunkSize;
Arena->RegionMemorySize = ChunkSize * ChunksPerRegion;
Arena->GrowArenaProc = GrowProc;
Arena->FreeArenaMemoryProc = FreeProc;
}
#define GS_MEMORY_H
#endif // GS_MEMORY_H

613
src/gs_memory_arena.h Normal file
View File

@ -0,0 +1,613 @@
// File: gs_memory_arena.h
// Description: Single header file library that defines a push-only memory arena
// Author: Peter Slattery
// Date Created: 2019-12-22
//
//
// -----------------
// Set Up
// -----------------
//
// Include 'gs_memory_arena.h' in a file and start using it! (Simple! Nice!)
//
// -----------------
// Usage
// -----------------
// Simply create a memory_arena and use PushSize, PushStruct, or PushArray
// to allocate out of it.
// See Example Program below.
//
// While there are options you can set (see Options below), the library adheres
// to a 'zero-is-initialization' policy, that is, a memory_arena initialized to
// zero, under all default options, will 'just work'.
//
// Alignment:
// By default, the Push functions use 4 byte alignment
// If you need to control the alignment of an allocation, there are variants of the
// Push functions that allow for this: PushSizeAligned, PushStructAligned, and PushArrayAligned
// These functions simply take a final parameter which specifies the alignment.
// Note: Alignment must be a power of two
//
// -----------------
// Options
// -----------------
//
// DEBUG:
// Define DEBUG for debug functionality.
//
// To override the default assert function define GSMem_Assert(expression)
// before inluding this file.
//
// GS_MEMORY_NO_STD_LIBS:
// if you don't want stdlib.h to be included, define GS_MEMORY_NO_STD_LIBS
// before including this file.
// Note that if you do this, zero-is-initialization will no longer work for
// memory_arenas. You must either:
// 1. Set each memory_arena's Alloc and Realloc so they can grow fields
// 2. Set each memory_arena's ExpansionRule to ExpansionRule_Disallowed
// If DEBUG is defined, the program will assert if one of the 2 rules above
// aren't followed.
//
// memory_arena.Alloc and memory_arena.Realloc
// By default, memory_arena's will use malloc and realloc to grow.
// You can override this by setting the Alloc and Realloc function pointers
// of a memory_arena. See the example program below for an implementation of this.
//
// GS_MEMORY_BUFFER_SIZE:
// This defines the minimum buffer size for memory_arena's. If an arena doesn't have
// room to fit an allocation, it will allocate a new buffer no smaller than GS_MEMORY_BUFFER_SIZE
// and place the allocation in the new buffer.
// By default this is 4096 bytes. To override, define GS_MEMORY_BUFFER_SIZE before including
// this file
//
// GS_MEMORY_TRACK_ALLOCATIONS:
// If you want to keep records of each allocation performed in every arena, define
// GS_MEMORY_TRACK_ALLOCATIONS before including this file.
// When defined, memory arenas gain fields that allow them to keep a list of every
// allocation they contain. It also adds a footer on the end of each allocation that
// can be checked to ensure there are no writes to allocations that overflow their bounds
// Note that calling ClearArena also clears this list
// You can then call AssertAllocationsNoOverflow occasionally throughout your program
// to check that no allocations have been written beyond their boundaries
//
//
// Example Program
// (this compiles - copy it into its own file though)
#if 0
#include "gs_memory_arena.h"
// Places the characters 'gs' at the end of each allocation. This would allow for an external
// function to check that we haven't written past the end of an allocation
void* MallocWrapper(gs_mem_u32 Size)
{
int SizeWithFooter = Size + (sizeof(char) * 2);
void* Result = malloc(SizeWithFooter);
char* Footer = (char*)(Result + Size);
Footer[0] = 'g';
Footer[1] = 's';
return Result;
}
void* ReallocWrapper(void* Address, gs_mem_u32 Size)
{
return realloc(Address, Size);
}
int
main(int ArgCount, char** Args)
{
memory_arena Arena = {};
// Uncomment these lines for an example of how you can implement custom allocation functions
// Arena.Alloc = MallocWrapper;
// Arena.Realloc = ReallocWrapper;
int ArrayLength = 10;
int* A = PushArray(&Arena, int, ArrayLength);
int* B = PushArray(&Arena, int, ArrayLength);
int* C = PushArray(&Arena, int, ArrayLength);
int* D = PushArrayAligned(&Arena, int, ArrayLength, 8);
int* E = PushArrayAligned(&Arena, int, ArrayLength, 16);
// Just ensure that we can actually write to each address of each array
for (s32 i = 0; i < ArrayLength; i++)
{
A[i] = i;
B[i] = i;
C[i] = i;
D[i] = i;
E[i] = i;
}
ClearArena(&Arena);
A = PushArray(&Arena, int, ArrayLength);
for (s32 i = 0; i < ArrayLength; i++)
{
A[i] = i;
}
return 0;
}
#endif
// -------------------
// Begin Library
// -------------------
#ifndef GS_MEMORY_ARENA_H
#ifndef GS_MEMORY_NO_STD_LIBS
// NOTE(Peter): We use this so that we can fall back on malloc and realloc
// in the event that a memory_arena needs to grow but doesn't have a
// alloc or realloc function pointer assigned to it.
//
// See GrowArena to see where this is used
//
#include <stdlib.h>
#endif
typedef unsigned char gs_mem_u8;
typedef unsigned int gs_mem_u32;
typedef unsigned long long int gs_mem_u64;
#ifdef DEBUG
#if !defined(GSMem_Assert)
#define GSMem_Assert(expression) \
if(!(expression)) { \
*((int *)0) = 5; \
}
#endif
#else
#define GSMem_Assert(expression)
#endif
enum gs_memory_expansion_rule
{
MemoryExpansion_Allowed, // Zero is initialization lets the memory grow on its own
MemoryExpansion_OnlyIfFunctionsProvided,
MemoryExpansion_Disallowed,
MemoryExpansion_Count,
};
// NOTE(Peter):
// This rule is only here to allow for taking arena snapshots. The problem this solves
// is if you take a snapshot while there are 'holes' in memory_buffers behind the
// most recently added memory_buffer, take a snapshot of that arena, then push something
// on that fits in one of those holes, we will fill the hole and be unable to track/free
// that addition via the snapshot construct.
//
// By requiring that allocations in a buffer only come from the most recent memory_buffer
// we can very easily rewind the buffer to the correct location.
// Hence FindAddress_InLastBufferOnly
enum gs_memory_find_address_rule
{
FindAddress_InAnyBuffer,
FindAddress_InLastBufferOnly,
FindAddress_Count,
};
typedef void* gs_memory_alloc(gs_mem_u32 Size);
typedef void* gs_memory_realloc(void* Address, gs_mem_u32 OldSize, gs_mem_u32 NewSize);
typedef void gs_memory_free(void* Address, gs_mem_u32 Size);
#ifndef GS_MEMORY_BUFFER_SIZE
#define GS_MEMORY_BUFFER_SIZE 1024
#endif
#define GS_MEMORY_FOOTER_SIZE 4
#define GS_MEMORY_FOOTER_0 'g'
#define GS_MEMORY_FOOTER_1 's'
#define GS_MEMORY_FOOTER_2 'p'
#define GS_MEMORY_FOOTER_3 's'
struct tracked_allocation
{
gs_mem_u8* Head;
gs_mem_u8* Footer;
char* File;
gs_mem_u32 LineNumber;
};
#define GS_MEM_TRACKED_ALLOCATION_BUFFER_SIZE 512
struct tracked_allocation_buffer
{
tracked_allocation Buffer[GS_MEM_TRACKED_ALLOCATION_BUFFER_SIZE];
};
struct memory_buffer
{
gs_mem_u8* Buffer;
gs_mem_u32 Size;
gs_mem_u32 Used;
};
struct memory_arena
{
memory_buffer* Buffers;
gs_mem_u32 BuffersCount;
gs_mem_u32 TotalUsed;
gs_mem_u32 TotalSize;
gs_memory_find_address_rule FindAddressRule;
gs_memory_expansion_rule ExpansionRule;
gs_memory_alloc* Alloc;
gs_memory_realloc* Realloc;
#ifdef GS_MEMORY_TRACK_ALLOCATIONS
tracked_allocation_buffer** AllocationBuffers;
gs_mem_u32 AllocationBuffersCount;
gs_mem_u32 AllocationsUsed;
#endif
};
struct address_and_buffer
{
memory_buffer* Buffer;
gs_mem_u64 Address;
gs_mem_u32 SizeWithAlignment;
};
struct arena_snapshot
{
gs_mem_u32 ArenaUsedAtSnapshot;
gs_mem_u32 HeadBufferUsedAtSnapshot;
gs_mem_u32 HeadBufferAtSnapshot;
memory_arena* Arena;
#ifdef GS_MEMORY_TRACK_ALLOCATIONS
gs_mem_u32 AllocationsUsedAtSnapshot;
#endif
};
static void
FreeMemoryArena(memory_arena* Arena, gs_memory_free* Free)
{
if (Free)
{
for (gs_mem_u32 i = 0; i < Arena->BuffersCount; i++)
{
memory_buffer* Buffer = Arena->Buffers + i;
Free(Buffer->Buffer, Buffer->Size);
}
Free(Arena->Buffers, sizeof(memory_buffer) * Arena->BuffersCount);
}
else
{
#ifdef GS_MEMORY_NO_STD_LIBS
GSMem_Assert(0);
#else
for (gs_mem_u32 i = 0; i < Arena->BuffersCount; i++)
{
memory_buffer* Buffer = Arena->Buffers + i;
free(Buffer->Buffer);
}
free(Arena->Buffers);
#endif
}
}
#define IsPowerOfTwo(v) ((v != 0) && ((v & (v - 1)) == 0))
inline gs_mem_u32
GetAlignmentOffset (gs_mem_u64 Address, gs_mem_u32 Alignment, gs_mem_u32 AlignmentMask)
{
gs_mem_u32 AlignmentOffset = 0;
if (Address & AlignmentMask)
{
AlignmentOffset = Alignment - (Address & AlignmentMask);
}
return AlignmentOffset;
}
static address_and_buffer
GetAlignedAddressInBuffer(memory_buffer* Buffer, gs_mem_u32 Size, gs_mem_u32 Alignment, gs_mem_u32 AlignmentMask)
{
address_and_buffer Result = {};
gs_mem_u64 HeadAddress = (gs_mem_u64)Buffer->Buffer + Buffer->Used;
gs_mem_u32 AlignmentOffset = GetAlignmentOffset(HeadAddress, Alignment, AlignmentMask);
gs_mem_u64 AlignedAddress = HeadAddress + AlignmentOffset;
if (Buffer->Used + AlignmentOffset + Size <= Buffer->Size)
{
Result.Buffer = Buffer;
Result.Address = AlignedAddress;
Result.SizeWithAlignment = Size + AlignmentOffset;
}
return Result;
}
static address_and_buffer
FindAlignedAddressInBufferWithRoom(memory_arena* Arena, gs_mem_u32 Size, gs_mem_u32 Alignment, gs_mem_u32 AlignmentMask)
{
address_and_buffer Result = {};
for (gs_mem_u32 i = 0; i < Arena->BuffersCount; i++)
{
memory_buffer* At = Arena->Buffers + i;
GSMem_Assert(At);
address_and_buffer AddressInCurrentBuffer = GetAlignedAddressInBuffer(At, Size, Alignment, AlignmentMask);
if (AddressInCurrentBuffer.Address != 0)
{
Result = AddressInCurrentBuffer;
break;
}
}
return Result;
}
static gs_mem_u8*
ArenaAlloc(memory_arena* Arena, gs_mem_u32 Size)
{
gs_mem_u8* Result = 0;
if (Arena->Alloc)
{
Result = (gs_mem_u8*)Arena->Alloc(sizeof(gs_mem_u8) * Size);
}
else
{
#ifdef GS_MEMORY_NO_STD_LIBS
// NOTE(Peter): If you specify no std libs AND don't supply a allocation function
// we should assert as this is an invalid codepath
GSMem_Assert(0);
#else
Result = (gs_mem_u8*)malloc(sizeof(gs_mem_u8) * Size);
#endif
}
return Result;
}
static gs_mem_u8*
ArenaRealloc(memory_arena* Arena, gs_mem_u8* Head, gs_mem_u32 OldSize, gs_mem_u32 NewSize)
{
gs_mem_u8* Result = 0;
if (Arena->Realloc != 0)
{
Result = (gs_mem_u8*)Arena->Realloc(Head, OldSize, NewSize);
}
else
{
#ifdef GS_MEMORY_NO_STD_LIBS
// NOTE(Peter): If you specify no std libs AND don't supply a reallocation function
// we should assert as this is an invalid codepath
GSMem_Assert(0);
#else
Result = (gs_mem_u8*)realloc(Head, NewSize);
#endif
}
return Result;
}
static memory_buffer*
GrowArena(memory_arena* Arena, gs_mem_u32 SizeNeeded)
{
GSMem_Assert(Arena->ExpansionRule != MemoryExpansion_Disallowed);
if (Arena->ExpansionRule == MemoryExpansion_OnlyIfFunctionsProvided)
{
GSMem_Assert((Arena->Alloc != 0) && (Arena->Realloc != 0));
}
gs_mem_u32 NewBuffersCount = (Arena->BuffersCount + 1);
gs_mem_u32 OldBuffersSize = sizeof(memory_buffer) * Arena->BuffersCount;
gs_mem_u32 NewBuffersSize = sizeof(memory_buffer) * NewBuffersCount;
Arena->Buffers = (memory_buffer*)ArenaRealloc(Arena, (gs_mem_u8*)Arena->Buffers, OldBuffersSize, NewBuffersSize);
Arena->BuffersCount = NewBuffersCount;
memory_buffer* NewBuffer = Arena->Buffers + (Arena->BuffersCount - 1);
NewBuffer->Size = GS_MEMORY_BUFFER_SIZE;
if (SizeNeeded > NewBuffer->Size)
{
NewBuffer->Size = SizeNeeded;
}
NewBuffer->Buffer = ArenaAlloc(Arena, sizeof(gs_mem_u8) * NewBuffer->Size);
NewBuffer->Used = 0;
Arena->TotalSize += NewBuffer->Size;
return NewBuffer;
}
#ifdef GS_MEMORY_TRACK_ALLOCATIONS
#define DetermineAllocationSize(size) (size) + GS_MEMORY_FOOTER_SIZE
#define ClearAllocationsUsed(arena) (arena)->AllocationsUsed = 0
#define ClearAllocationsUsedToSnapshot(arena, snapshot) \
(arena)->AllocationsUsed = (snapshot).AllocationsUsedAtSnapshot;
static void
TrackAllocation(memory_arena* Arena, gs_mem_u8* Head, gs_mem_u32 Size, char* Filename, gs_mem_u32 LineNumber)
{
gs_mem_u32 AllocationsMax = Arena->AllocationBuffersCount * GS_MEM_TRACKED_ALLOCATION_BUFFER_SIZE;
if (Arena->AllocationsUsed >= AllocationsMax)
{
gs_mem_u32 NewAllocationBuffersCount = Arena->AllocationBuffersCount + 1;
Arena->AllocationBuffers = (tracked_allocation_buffer**)ArenaRealloc(Arena,
(gs_mem_u8*)Arena->AllocationBuffers,
Arena->AllocationBuffersCount * sizeof(void*),
NewAllocationBuffersCount * sizeof(void*));
Arena->AllocationBuffersCount = NewAllocationBuffersCount;
gs_mem_u32 NewBufferIndex = Arena->AllocationBuffersCount - 1;
Arena->AllocationBuffers[NewBufferIndex] = (tracked_allocation_buffer*)ArenaAlloc(Arena, sizeof(tracked_allocation_buffer));
}
gs_mem_u32 AllocationIndex = Arena->AllocationsUsed++;
gs_mem_u32 BufferIndex = AllocationIndex / GS_MEM_TRACKED_ALLOCATION_BUFFER_SIZE;
gs_mem_u32 IndexInBuffer = AllocationIndex % GS_MEM_TRACKED_ALLOCATION_BUFFER_SIZE;
tracked_allocation_buffer* Buffer = Arena->AllocationBuffers[BufferIndex];
tracked_allocation* NewAllocationTracker = Buffer->Buffer + IndexInBuffer;
NewAllocationTracker->Head = Head;
NewAllocationTracker->Footer = Head + Size - GS_MEMORY_FOOTER_SIZE;
NewAllocationTracker->Footer[0] = GS_MEMORY_FOOTER_0;
NewAllocationTracker->Footer[1] = GS_MEMORY_FOOTER_1;
NewAllocationTracker->Footer[2] = GS_MEMORY_FOOTER_2;
NewAllocationTracker->Footer[3] = GS_MEMORY_FOOTER_3;
NewAllocationTracker->File = Filename;
NewAllocationTracker->LineNumber = LineNumber;
}
inline bool
VerifyAllocationNoOverflow (tracked_allocation Allocation)
{
bool Result = ((Allocation.Footer[0] == GS_MEMORY_FOOTER_0) &&
(Allocation.Footer[1] == GS_MEMORY_FOOTER_1) &&
(Allocation.Footer[2] == GS_MEMORY_FOOTER_2) &&
(Allocation.Footer[3] == GS_MEMORY_FOOTER_3));
return Result;
}
static void
AssertAllocationsNoOverflow (memory_arena Arena)
{
for (gs_mem_u32 AllocationIndex = 0;
AllocationIndex< Arena.AllocationsUsed;
AllocationIndex++)
{
gs_mem_u32 BufferIndex = AllocationIndex / GS_MEM_TRACKED_ALLOCATION_BUFFER_SIZE;
gs_mem_u32 IndexInBuffer = AllocationIndex % GS_MEM_TRACKED_ALLOCATION_BUFFER_SIZE;
tracked_allocation_buffer* Buffer = Arena.AllocationBuffers[BufferIndex];
tracked_allocation Allocation = Buffer->Buffer[IndexInBuffer];
GSMem_Assert(VerifyAllocationNoOverflow(Allocation));
}
}
#define PushSize(arena, size) PushSize_((arena), (size), 4, __FILE__, __LINE__)
#define PushArray(arena, type, length) (type*)PushSize_((arena), sizeof(type) * length, 4, __FILE__, __LINE__)
#define PushStruct(arena, type) (type*)PushSize_((arena), sizeof(type), 4, __FILE__, __LINE__)
#define PushSizeAligned(arena, size, alignment) PushSize_((arena), (size), (alignment), __FILE__, __LINE__)
#define PushArrayAligned(arena, type, length, alignment) (type*)PushSize_((arena), sizeof(type) * length, (alignment), __FILE__, __LINE__)
#define PushStructAligned(arena, type, alignment) (type*)PushSize_((arena), sizeof(type), (alignment), __FILE__, __LINE__)
#else // GS_MEMORY_TRACK_ALLOCATIONS
#define AssertAllocationsNoOverflow(arena)
#define DetermineAllocationSize(size) size
#define ClearAllocationsUsed(arena)
#define ClearAllocationsUsedToSnapshot(arena, snapshot)
#define TrackAllocation(arena, head, size, filename, linenumber)
#define PushSize(arena, size) PushSize_((arena), (size))
#define PushArray(arena, type, length) (type*)PushSize_((arena), sizeof(type) * length)
#define PushStruct(arena, type) (type*)PushSize_((arena), sizeof(type))
#define PushSizeAligned(arena, size, alignment) PushSize_((arena), (size), (alignment))
#define PushArrayAligned(arena, type, length, alignment) (type*)PushSize_((arena), sizeof(type) * length, (alignment))
#define PushStructAligned(arena, type, alignment) (type*)PushSize_((arena), sizeof(type), (alignment))
#endif // GS_MEMORY_TRACK_ALLOCATIONS
static gs_mem_u8*
PushSize_(memory_arena* Arena, gs_mem_u32 Size, gs_mem_u32 Alignment = 4, char* Filename = 0, gs_mem_u32 LineNumber = 0)
{
// ie. Alignment = 4 = 100 (binary)
// 4 - 1 = 3
// 100 - 1 = 011 which is a mask of the bits we don't want set in the start address
GSMem_Assert(IsPowerOfTwo(Alignment));
gs_mem_u32 AlignmentMask = Alignment - 1;
gs_mem_u32 AllocationSize = DetermineAllocationSize(Size);
address_and_buffer ResultAddress = {};
if (Arena->FindAddressRule == FindAddress_InAnyBuffer)
{
ResultAddress = FindAlignedAddressInBufferWithRoom(Arena, AllocationSize, Alignment, AlignmentMask);
}
else if (Arena->FindAddressRule == FindAddress_InLastBufferOnly
&& Arena->BuffersCount > 0)
{
memory_buffer* LastBuffer = Arena->Buffers + Arena->BuffersCount - 1;
ResultAddress = GetAlignedAddressInBuffer(LastBuffer, Size, Alignment, AlignmentMask);
}
if (ResultAddress.Address == 0)
{
memory_buffer* Buffer = GrowArena(Arena, AllocationSize);
ResultAddress = GetAlignedAddressInBuffer(Buffer, AllocationSize, Alignment, AlignmentMask);
}
GSMem_Assert(ResultAddress.Address != 0);
GSMem_Assert((ResultAddress.Address & AlignmentMask) == 0);
gs_mem_u8* Result = (gs_mem_u8*)ResultAddress.Address;
ResultAddress.Buffer->Used += ResultAddress.SizeWithAlignment;
Arena->TotalUsed += ResultAddress.SizeWithAlignment;
TrackAllocation(Arena, Result, AllocationSize, Filename, LineNumber);
return Result;
}
static void
ClearArena(memory_arena* Arena)
{
for (gs_mem_u32 i = 0; i < Arena->BuffersCount; i++)
{
memory_buffer* At = Arena->Buffers + i;
At->Used = 0;
}
Arena->TotalUsed = 0;
ClearAllocationsUsed(Arena);
}
static arena_snapshot
TakeSnapshotOfArena(memory_arena* Arena)
{
Assert(Arena->FindAddressRule == FindAddress_InLastBufferOnly);
arena_snapshot Result = {};
Result.Arena = Arena;
Result.ArenaUsedAtSnapshot = Arena->TotalUsed;
if (Arena->BuffersCount > 0)
{
Result.HeadBufferAtSnapshot = Arena->BuffersCount - 1;
}
else
{
Result.HeadBufferAtSnapshot = 0;
}
memory_buffer* HeadBuffer = Arena->Buffers + Result.HeadBufferAtSnapshot;
if (HeadBuffer)
{
Result.HeadBufferUsedAtSnapshot = HeadBuffer->Used;
}
return Result;
}
static void
ClearArenaToSnapshot(memory_arena* Arena, arena_snapshot Snapshot)
{
Assert(Arena == Snapshot.Arena);
memory_buffer* HeadBufferAtSnapshot = Arena->Buffers + Snapshot.HeadBufferAtSnapshot;
if (HeadBufferAtSnapshot)
{
HeadBufferAtSnapshot->Used = Snapshot.HeadBufferUsedAtSnapshot;
for (gs_mem_u32 i = Snapshot.HeadBufferAtSnapshot + 1; i < Arena->BuffersCount; i++)
{
memory_buffer* Buffer = Arena->Buffers + i;
Buffer->Used = 0;
}
}
Arena->TotalUsed = Snapshot.ArenaUsedAtSnapshot;
ClearAllocationsUsedToSnapshot(Arena, Snapshot);
}
#define GS_MEMORY_ARENA_H
#endif // GS_MEMORY_ARENA_H

View File

@ -75,6 +75,9 @@ typedef PLATFORM_ALLOC(platform_alloc);
#define PLATFORM_FREE(name) b32 name(u8* Base, s32 Size)
typedef PLATFORM_FREE(platform_free);
#define PLATFORM_REALLOC(name) u8* name(u8* Base, u32 OldSize, u32 NewSize)
typedef PLATFORM_REALLOC(platform_realloc);
#define PLATFORM_READ_ENTIRE_FILE(name) platform_memory_result name(char* Path)
typedef PLATFORM_READ_ENTIRE_FILE(platform_read_entire_file);

View File

@ -61,6 +61,7 @@ internal void Win32DisplayBufferInWindow(win32_offscreen_buffer* Buffer
internal PLATFORM_ALLOC(Win32Alloc);
internal PLATFORM_FREE(Win32Free);
internal PLATFORM_REALLOC(Win32Realloc);
// File IO
internal PLATFORM_READ_ENTIRE_FILE(Win32ReadEntireFile);
@ -610,6 +611,17 @@ PLATFORM_FREE(Win32Free)
return Result;
}
PLATFORM_REALLOC(Win32Realloc)
{
u8* NewMemory = Win32BasicAlloc(NewSize);
if (Base)
{
GSMemCopy(Base, NewMemory, OldSize);
Win32Free(Base, OldSize);
}
return NewMemory;
}
// File IO
PLATFORM_READ_ENTIRE_FILE(Win32ReadEntireFile)
{

View File

@ -567,7 +567,8 @@ INT NCmdShow
Context.GeneralWorkQueue = &WorkQueue;
Context.PlatformAlloc = Win32Alloc;
Context.PlatformFree = Win32Free;
Context.PlatformReadEntireFile = Win32ReadEntireFile;
Context.PlatformRealloc = Win32Realloc;
Context.PlatformReadEntireFile = Win32ReadEntireFile;
Context.PlatformWriteEntireFile = Win32WriteEntireFile;
Context.PlatformGetFilePath = Win32SystemDialogueOpenFile;
Context.PlatformGetGPUTextureHandle = Win32GetGPUTextureHandle;