internal node_list_iterator GetNodeListIterator(node_list List) { node_list_iterator Result = {}; Result.List = List; Result.CurrentBuffer = List.First; Result.At = Result.CurrentBuffer->Headers; Result.TotalIndexAt = 0; Result.BufferIndexAt = 0; return Result; } internal b32 NodeIteratorIsValid(node_list_iterator Iter) { b32 Result = (Iter.At != 0); Result &= Iter.TotalIndexAt < Iter.List.TotalUsed && Iter.TotalIndexAt >= 0; Result &= Iter.BufferIndexAt < Iter.CurrentBuffer->Used && Iter.BufferIndexAt >= 0; return Result; } internal void Next (node_list_iterator* Iter) { if (Iter->BufferIndexAt < Iter->CurrentBuffer->Used) { Iter->At++; Iter->TotalIndexAt++; Iter->BufferIndexAt++; if (Iter->At->Handle == 0) { Next(Iter); } } else if (Iter->CurrentBuffer->Next) { Iter->CurrentBuffer = Iter->CurrentBuffer->Next; Iter->At = Iter->CurrentBuffer->Headers; Iter->TotalIndexAt++; Iter->BufferIndexAt = 0; if (Iter->At->Handle == 0) { Next(Iter); } } else { Iter->At = 0; Iter->TotalIndexAt = -1; Iter->BufferIndexAt = -1; } } internal node_list_buffer* AllocateNodeListBuffer (memory_arena* Storage, s32 Count) { node_list_buffer* Result = PushStruct(Storage, node_list_buffer);; Result->Headers = PushArray(Storage, node_header, Count); Result->Max = Count; Result->Used = 0; Result->Next = 0; return Result; } internal node_list* AllocateNodeList (memory_arena* Storage, s32 InitialCount) { node_list* Result = PushStruct(Storage, node_list); Result->First = AllocateNodeListBuffer(Storage, InitialCount); Result->Head = Result->First; Result->TotalMax = InitialCount; Result->TotalUsed = 0; Result->HandleAccumulator = 0; return Result; } global_variable char* OutputName = "Output"; internal string GetNodeName (node_header Node) { string Result = {}; node_specification Spec = NodeSpecifications[Node.Type]; Result = MakeString(Spec.Name, Spec.NameLength); return Result; } internal node_header* PushNodeOnList (node_list* List, s32 ConnectionsCount, v2 Min, v2 Dim, memory_arena* Storage) { node_header* Result = 0; if ((List->TotalUsed + 1) >= List->TotalMax) { node_list_buffer* Buf = AllocateNodeListBuffer(Storage, List->Head->Max); List->Head->Next = Buf; List->Head = Buf; List->TotalMax += Buf->Max; } Assert(List->TotalUsed + 1 <= List->TotalMax); Result = List->Head->Headers + List->Head->Used; Result->Handle = ++List->HandleAccumulator; // :ConnectionsToStretchyBuffer Assert(List->ConnectionsUsed + ConnectionsCount < NODE_LIST_CONNECTIONS_MAX); Result->ConnectionsCount = ConnectionsCount; Result->Connections = (node_connection*)(List->Connections + List->ConnectionsUsed); List->ConnectionsUsed += ConnectionsCount; for (s32 c = 0; c < Result->ConnectionsCount; c++) { Result->Connections[c].NodeHandle = Result->Handle; } Result->Min = Min; Result->Dim = Dim; List->Head->Used++; List->TotalUsed++; return Result; } internal void FreeNodeOnList (node_list* List, node_header* Node) { // TODO(Peter): } internal void InitializeNodeConnection (node_connection* Connection, node_struct_member Member, node_header* Node) { Connection->Type = Member.Type; Connection->UpstreamNodeHandle = 0; Connection->UpstreamNodePortIndex = -1; Connection->DownstreamNodeHandle = 0; Connection->DownstreamNodePortIndex = -1; Connection->DirectionMask = Member.IsInput; Connection->Ptr = Node->PersistentData + Member.Offset; switch (Member.Type) { case MemberType_s32: { *Connection->S32ValuePtr = 0; }break; case MemberType_r32: { *Connection->R32ValuePtr = 0; }break; case MemberType_v4: { *Connection->V4ValuePtr = v4{0, 0, 0, 1}; }break; case MemberType_NODE_COLOR_BUFFER: { *Connection->LEDsValuePtr = {}; }break; InvalidDefaultCase; } } inline r32 CalculateNodeHeight (s32 Members) { r32 Result = (NODE_PORT_STEP * Members) + NODE_HEADER_HEIGHT; return Result; } internal node_header* PushNodeOnListFromSpecification (node_list* List, node_type Type, v2 Min, memory_arena* Storage) { node_header* Node = 0; node_specification Spec = NodeSpecifications[Type]; // :NodesDontNeedToKnowTheirBounds r32 NodeHeight = CalculateNodeHeight (Spec.MemberListLength); Node = PushNodeOnList(List, Spec.MemberListLength, Min, v2{150, NodeHeight}, Storage); Node->Type = Type; Node->PersistentData = PushArray(Storage, u8, Spec.DataStructSize); node_struct_member* MemberList = Spec.MemberList; for (s32 MemberIdx = 0; MemberIdx < Spec.MemberListLength; MemberIdx++) { node_struct_member Member = MemberList[MemberIdx]; InitializeNodeConnection(Node->Connections + MemberIdx, Member, Node); } return Node; } internal node_header* PushOutputNodeOnList (node_list* List, v2 Min, memory_arena* Storage) { node_header* Result = PushNodeOnListFromSpecification(List, NodeType_OutputNode, Min, Storage); return Result; } internal node_header* GetNodeWithHandle(node_list* List, s32 Handle) { DEBUG_TRACK_FUNCTION; node_header* Result = 0; node_list_iterator Iter = GetNodeListIterator(*List); while (NodeIteratorIsValid(Iter)) { if(Iter.At->Handle == Handle) { Result = Iter.At; break; } Next(&Iter); } return Result; } internal rect CalculateNodeBounds (node_header* Node, node_render_settings Settings) { rect Result = {}; Result.Min = Node->Min; Result.Max = Node->Min + Node->Dim + v2{0, NODE_HEADER_HEIGHT}; return Result; } internal rect CalculateNodeInputPortBounds (node_header* Node, s32 Index, node_render_settings RenderSettings) { rect Result = {}; Result.Min = v2{ Node->Min.x, Node->Min.y + Node->Dim.y - ((NODE_PORT_STEP * (Index + 1)) + NODE_HEADER_HEIGHT)}; Result.Max = Result.Min + NODE_PORT_DIM; return Result; } internal rect CalculateNodeInputValueBounds (node_header* Node, s32 Index, node_render_settings RenderSettings) { rect Result = {}; rect Port = CalculateNodeInputPortBounds(Node, Index, RenderSettings); Result.Min = v2{Port.Max.x, Port.Min.y}; Result.Max = Result.Min + v2{NODE_PORT_DIM.x * 2, NODE_PORT_DIM.y}; return Result; } internal rect CalculateNodeOutputPortBounds (node_header* Node, s32 Index, node_render_settings RenderSettings) { rect Result = {}; Result.Min = v2{ Node->Min.x + Node->Dim.x - NODE_PORT_DIM.x, Node->Min.y + Node->Dim.y - ((NODE_PORT_STEP * (Index + 1)) + NODE_HEADER_HEIGHT)}; Result.Max = Result.Min + NODE_PORT_DIM; return Result; } internal rect CalculateNodeOutputValueBounds (node_header* Node, s32 Index, node_render_settings RenderSettings) { rect Result = {}; rect Port = CalculateNodeOutputPortBounds(Node, Index, RenderSettings); Result.Min = v2{Port.Min.x - (NODE_PORT_DIM.x * 2), Port.Min.y}; Result.Max = v2{Port.Min.x, Port.Max.y}; return Result; } internal rect GetBoundsOfPortConnectedToInput (node_header* Node, s32 PortIndex, node_list* NodeList, node_render_settings RenderSettings) { node_header* ConnectedNode = GetNodeWithHandle(NodeList, Node->Connections[PortIndex].UpstreamNodeHandle); rect Result = CalculateNodeOutputPortBounds(ConnectedNode, Node->Connections[PortIndex].UpstreamNodePortIndex, RenderSettings); return Result; } internal rect GetBoundsOfPortConnectedToOutput (node_header* Node, s32 PortIndex, node_list* NodeList, node_render_settings RenderSettings) { node_header* ConnectedNode = GetNodeWithHandle(NodeList, Node->Connections[PortIndex].DownstreamNodeHandle); rect Result = CalculateNodeInputPortBounds(ConnectedNode, Node->Connections[PortIndex].DownstreamNodePortIndex, RenderSettings); return Result; } internal rect CalculateNodeDragHandleBounds (rect NodeBounds, s32 Index, node_render_settings RenderSettings) { rect Result {}; v2 HorizontalOffset = v2{Width(NodeBounds) / 3, 0}; Result.Min = v2{NodeBounds.Min.x, NodeBounds.Max.y - NODE_HEADER_HEIGHT} + (HorizontalOffset * Index); Result.Max = Result.Min + v2{HorizontalOffset.x, NODE_HEADER_HEIGHT}; return Result; } internal node_interaction NewEmptyNodeInteraction () { node_interaction Result = {}; Result.NodeHandle = 0; Result.InputPort = -1; Result.InputValue = -1; Result.OutputPort = -1; Result.OutputValue = -1; return Result; } internal node_interaction NewNodeInteraction (s32 NodeHandle, v2 MouseOffset) { node_interaction Result = {}; Result.NodeHandle = NodeHandle; Result.MouseOffset = MouseOffset; Result.InputPort = -1; Result.InputValue = -1; Result.OutputPort = -1; Result.OutputValue = -1; return Result; } internal b32 IsDraggingNode (node_interaction Interaction) { b32 Result = ((Interaction.NodeHandle > 0) && (Interaction.InputPort < 0 && Interaction.InputValue < 0) && (Interaction.OutputPort < 0 && Interaction.InputValue < 0)); return Result; } internal b32 IsDraggingNodePort (node_interaction Interaction) { b32 Result = ((Interaction.NodeHandle > 0) && (Interaction.InputPort >= 0 || Interaction.OutputPort >= 0) && (Interaction.InputValue < 0 && Interaction.OutputValue < 0)); return Result; } internal b32 IsDraggingNodeValue (node_interaction Interaction) { b32 Result = ((Interaction.NodeHandle > 0) && (Interaction.InputPort < 0 && Interaction.OutputPort < 0) && (Interaction.InputValue >= 0 || Interaction.OutputValue >= 0)); return Result; } internal b32 IsDraggingNodeInput (node_interaction Interaction) { b32 Result = ((Interaction.NodeHandle > 0) && (Interaction.InputPort >= 0 || Interaction.InputValue >= 0) && (Interaction.OutputPort < 0 && Interaction.OutputValue < 0)); return Result; } internal b32 IsDraggingNodeInputPort (node_interaction Interaction) { b32 Result = ((Interaction.NodeHandle > 0) && (Interaction.InputPort >= 0) && (Interaction.InputValue < 0) && (Interaction.OutputPort < 0 && Interaction.OutputValue < 0)); return Result; } internal b32 IsDraggingNodeInputValue (node_interaction Interaction) { b32 Result = ((Interaction.NodeHandle > 0) && (Interaction.InputPort < 0) && (Interaction.InputValue >= 0) && (Interaction.OutputPort < 0 && Interaction.OutputValue < 0)); return Result; } internal b32 IsDraggingNodeOutput (node_interaction Interaction) { b32 Result = ((Interaction.NodeHandle > 0) && (Interaction.OutputPort >= 0 || Interaction.OutputValue >= 0) && (Interaction.InputPort < 0 && Interaction.InputValue < 0)); return Result; } internal b32 IsDraggingNodeOutputPort (node_interaction Interaction) { b32 Result = ((Interaction.NodeHandle > 0) && (Interaction.OutputPort >= 0) && (Interaction.OutputValue < 0) && (Interaction.InputPort < 0 && Interaction.InputValue < 0)); return Result; } internal b32 IsDraggingNodeOutputValue (node_interaction Interaction) { b32 Result = ((Interaction.NodeHandle > 0) && (Interaction.OutputPort < 0) && (Interaction.OutputValue >= 0) && (Interaction.InputPort < 0 && Interaction.InputValue < 0)); return Result; } internal b32 ConnectionIsConnected (node_connection Connection) { b32 Result = (Connection.UpstreamNodeHandle > 0) || (Connection.DownstreamNodeHandle > 0); return Result; } internal b32 ConnectionIsConnected (node_header* Node, s32 Index) { b32 Result = ConnectionIsConnected(Node->Connections[Index]); return Result; } internal b32 ConnectionHasUpstreamConnection (node_connection Connection) { b32 Result = (Connection.UpstreamNodeHandle > 0); return Result; } internal b32 ConnectionHasUpstreamConnection (node_header* Node, s32 Index) { b32 Result = ConnectionHasUpstreamConnection(Node->Connections[Index]); return Result; } internal b32 ConnectionHasDownstreamConnection (node_connection Connection) { b32 Result = (Connection.DownstreamNodeHandle > 0); return Result; } internal b32 ConnectionHasDownstreamConnection (node_header* Node, s32 Index) { b32 Result = ConnectionHasDownstreamConnection(Node->Connections[Index]); return Result; } internal b32 ConnectionIsInput (node_connection Connection) { b32 Result = (Connection.DirectionMask & IsInputMember) > 0; return Result; } internal b32 ConnectionIsInput (node_header* Node, s32 ConnectionIdx) { return ConnectionIsInput(Node->Connections[ConnectionIdx]); } internal b32 ConnectionIsOutput (node_connection Connection) { b32 Result = (Connection.DirectionMask & IsOutputMember) > 0; return Result; } internal b32 ConnectionIsOutput (node_header* Node, s32 ConnectionIdx) { return ConnectionIsOutput(Node->Connections[ConnectionIdx]); } internal b32 CheckForRecursionWithHandle (node_list* NodeList, s32 LookForNodeHandle, node_header* StartNode) { DEBUG_TRACK_FUNCTION; b32 Result = false; for (s32 Connection = 0; Connection < StartNode->ConnectionsCount; Connection++) { if (!ConnectionIsOutput(StartNode->Connections[Connection])) { continue; } if (StartNode->Connections[Connection].DownstreamNodeHandle == LookForNodeHandle) { Result = true; break; } if (StartNode->Connections[Connection].DownstreamNodeHandle > 0) { node_header* NextNode = GetNodeWithHandle(NodeList, StartNode->Connections[Connection].DownstreamNodeHandle); Result = CheckForRecursionWithHandle(NodeList, LookForNodeHandle, NextNode); if (Result) { break; } } } return Result; } internal b32 PortTypesMatch (node_header* UpstreamNode, s32 UpstreamNode_OutputPort, node_header* DownstreamNode, s32 DownstreamNode_InputPort) { Assert(ConnectionIsOutput(UpstreamNode, UpstreamNode_OutputPort)); Assert(ConnectionIsInput(DownstreamNode, DownstreamNode_InputPort)); b32 Result = UpstreamNode->Connections[UpstreamNode_OutputPort].Type == DownstreamNode->Connections[DownstreamNode_InputPort].Type; return Result; } internal void ConnectNodes(node_list* NodeList, s32 UpstreamNodeHandle, s32 UpstreamNodePort, s32 DownstreamNodeHandle, s32 DownstreamNodePort) { node_header* UpstreamNode = 0; node_header* DownstreamNode = GetNodeWithHandle(NodeList, DownstreamNodeHandle); if (!CheckForRecursionWithHandle(NodeList, UpstreamNodeHandle, DownstreamNode)) { UpstreamNode = GetNodeWithHandle(NodeList, UpstreamNodeHandle); if (PortTypesMatch(UpstreamNode, UpstreamNodePort, DownstreamNode, DownstreamNodePort)) { Assert(ConnectionIsOutput(UpstreamNode, UpstreamNodePort)); Assert(ConnectionIsInput(DownstreamNode, DownstreamNodePort)); DownstreamNode->Connections[DownstreamNodePort].UpstreamNodeHandle = UpstreamNodeHandle; DownstreamNode->Connections[DownstreamNodePort].UpstreamNodePortIndex = UpstreamNodePort; UpstreamNode->Connections[UpstreamNodePort].DownstreamNodeHandle = DownstreamNodeHandle; UpstreamNode->Connections[UpstreamNodePort].DownstreamNodePortIndex = DownstreamNodePort; } } } internal void UnconnectNodes (node_list* NodeList, s32 DownstreamNodeHandle, s32 DownstreamNode_OutputPort, s32 UpstreamNodeHandle, s32 UpstreamNode_InputPort) { node_header* DownstreamNode = GetNodeWithHandle(NodeList, DownstreamNodeHandle); node_header* UpstreamNode = GetNodeWithHandle(NodeList, UpstreamNodeHandle); Assert(ConnectionIsOutput(DownstreamNode, DownstreamNode_OutputPort)); Assert(ConnectionIsInput(UpstreamNode, UpstreamNode_InputPort)); DownstreamNode->Connections[DownstreamNode_OutputPort].DownstreamNodeHandle = 0; DownstreamNode->Connections[DownstreamNode_OutputPort].DownstreamNodePortIndex = -1; UpstreamNode->Connections[UpstreamNode_InputPort].UpstreamNodeHandle = 0; UpstreamNode->Connections[UpstreamNode_InputPort].UpstreamNodePortIndex = -1; } internal node_header* GetNodeUnderPoint (node_list* NodeList, v2 Point, node_render_settings RenderSettings) { DEBUG_TRACK_FUNCTION; node_header* Result = 0; node_list_iterator NodeIter = GetNodeListIterator(*NodeList); while (NodeIteratorIsValid(NodeIter)) { node_header* Node = NodeIter.At; rect NodeBounds = CalculateNodeBounds(Node, RenderSettings); if (PointIsInRect(Point, NodeBounds)) { Result = Node; break; } Next(&NodeIter); } return Result; } internal node_interaction GetNodeInteractionType (node_header* ActiveNode, v2 MousePos, node_render_settings RenderSettings) { DEBUG_TRACK_FUNCTION; node_interaction Interaction = NewNodeInteraction(ActiveNode->Handle, ActiveNode->Min - MousePos); rect NodeBounds = CalculateNodeBounds(ActiveNode, RenderSettings); for (s32 Connection = 0; Connection < ActiveNode->ConnectionsCount; Connection++) { // Inputs if (ConnectionIsInput(ActiveNode, Connection)) { rect InputBounds = CalculateNodeInputPortBounds(ActiveNode, Connection, RenderSettings); rect ValueBounds = CalculateNodeInputValueBounds(ActiveNode, Connection, RenderSettings); if (PointIsInRect(MousePos, InputBounds)) { Interaction.InputPort = Connection; Interaction.MouseOffset = MousePos - InputBounds.Min; } else if(PointIsInRect(MousePos, ValueBounds)) { Interaction.InputValue = Connection; Interaction.MouseOffset = MousePos - ValueBounds.Min; } } // Outputs if (ConnectionIsOutput(ActiveNode, Connection)) { rect OutputBounds = CalculateNodeOutputPortBounds(ActiveNode, Connection, RenderSettings); rect ValueBounds = CalculateNodeOutputValueBounds(ActiveNode, Connection, RenderSettings); if (PointIsInRect(MousePos, OutputBounds)) { Interaction.OutputPort = Connection; Interaction.MouseOffset = MousePos - OutputBounds.Min; } else if(PointIsInRect(MousePos, ValueBounds)) { Interaction.OutputValue = Connection; Interaction.MouseOffset = MousePos - ValueBounds.Min; } } } // Drag Handles rect DragUpstreamHandleBounds = CalculateNodeDragHandleBounds(NodeBounds, 0, RenderSettings); rect DragAllHandleBounds = CalculateNodeDragHandleBounds(NodeBounds, 1, RenderSettings); rect DragDownstreamHandleBounds = CalculateNodeDragHandleBounds(NodeBounds, 2, RenderSettings); if (PointIsInRect(MousePos, DragUpstreamHandleBounds)) { Interaction.Flags = NodeInteraction_AllUpstream; } else if (PointIsInRect(MousePos, DragAllHandleBounds)) { Interaction.Flags = NodeInteraction_AllUpstream | NodeInteraction_AllDownstream; } else if (PointIsInRect(MousePos, DragDownstreamHandleBounds)) { Interaction.Flags = NodeInteraction_AllDownstream; } return Interaction; } internal void TryConnectNodes (node_interaction Interaction, v2 Point, node_list* NodeList, node_render_settings RenderSettings) { DEBUG_TRACK_FUNCTION; if (IsDraggingNodeOutput(Interaction)) { node_header* UpstreamNode = GetNodeUnderPoint(NodeList, Point, RenderSettings); if (UpstreamNode) { for (s32 Connection = 0; Connection < UpstreamNode->ConnectionsCount; Connection++) { if (ConnectionIsOutput(UpstreamNode, Connection)) { continue; } rect InputBounds = CalculateNodeInputPortBounds(UpstreamNode, Connection, RenderSettings); if (PointIsInRect(Point, InputBounds)) { ConnectNodes(NodeList, Interaction.NodeHandle, Interaction.OutputPort, UpstreamNode->Handle, Connection); break; } } } } else if (IsDraggingNodeInput(Interaction)) { node_header* DownstreamNode = GetNodeUnderPoint(NodeList, Point, RenderSettings); if (DownstreamNode) { for (s32 Connection = 0; Connection < DownstreamNode->ConnectionsCount; Connection++) { if (ConnectionIsInput(DownstreamNode, Connection)) { continue; } rect OutputBounds = CalculateNodeOutputPortBounds(DownstreamNode, Connection, RenderSettings); if (PointIsInRect(Point, OutputBounds)) { ConnectNodes(NodeList, DownstreamNode->Handle, Connection, Interaction.NodeHandle, Interaction.InputPort); break; } } } } } internal void PlaceNode (node_list* NodeList, node_header* Node, v2 Position, b32 Flags) { DEBUG_TRACK_FUNCTION; v2 Offset = Position - Node->Min; if (Flags & NodeInteraction_AllDownstream) { for (s32 Connection = 0; Connection < Node->ConnectionsCount; Connection++) { if (!ConnectionIsOutput(Node, Connection)) { continue; } s32 ConnectionHandle = Node->Connections[Connection].DownstreamNodeHandle; if (ConnectionHandle > 0) { node_header* ConnectedNode = GetNodeWithHandle(NodeList, ConnectionHandle); v2 CurrPos = ConnectedNode->Min; v2 NewPos = CurrPos + Offset; // NOTE(Peter): Have to negate the all downstream component so it doesn't turn around and try // to move this node again. PlaceNode(NodeList, ConnectedNode, NewPos, Flags & ~NodeInteraction_AllUpstream); } } } if (Flags & NodeInteraction_AllUpstream) { for (s32 Connection = 0; Connection < Node->ConnectionsCount; Connection++) { if (!ConnectionIsInput(Node, Connection)) { continue; } s32 ConnectionHandle = Node->Connections[Connection].UpstreamNodeHandle; if (ConnectionHandle > 0) { node_header* ConnectedNode = GetNodeWithHandle(NodeList, ConnectionHandle); v2 CurrPos = ConnectedNode->Min; v2 NewPos = CurrPos + Offset; // NOTE(Peter): Have to negate the all upstream component so it doesn't turn around and try // to move this node again. PlaceNode(NodeList, ConnectedNode, NewPos, Flags & ~NodeInteraction_AllDownstream); } } } Node->Min = Position; } internal void UpdateDraggingNode (v2 MousePos, node_interaction Interaction, node_list* NodeList, node_render_settings RenderSettings) { DEBUG_TRACK_FUNCTION; if (IsDraggingNode(Interaction)) { node_header* ActiveNode = GetNodeWithHandle(NodeList, Interaction.NodeHandle); PlaceNode(NodeList, ActiveNode, MousePos + Interaction.MouseOffset, Interaction.Flags); } } internal void UpdateDraggingNodePort (v2 MousePos, node_interaction Interaction, node_list* NodeList, node_render_settings RenderSettings, render_command_buffer* RenderBuffer) { DEBUG_TRACK_FUNCTION; if (IsDraggingNodePort(Interaction)) { node_header* ActiveNode = GetNodeWithHandle(NodeList, Interaction.NodeHandle); rect PortBounds = {}; if (IsDraggingNodeInput(Interaction)) { PortBounds = CalculateNodeInputPortBounds(ActiveNode, Interaction.InputPort, RenderSettings); } else if (IsDraggingNodeOutput(Interaction)) { PortBounds = CalculateNodeOutputPortBounds(ActiveNode, Interaction.OutputPort, RenderSettings); } v2 PortCenter = CalculateRectCenter(PortBounds); PushRenderLine2D(RenderBuffer, PortCenter, MousePos, 1, WhiteV4); } } internal void UpdateDraggingNodeValue (v2 MousePos, v2 LastFrameMousePos, node_interaction Interaction, node_list* NodeList, node_render_settings RenderSettings, app_state* State) { DEBUG_TRACK_FUNCTION; if(IsDraggingNodeValue(Interaction)) { v2 MouseDelta = MousePos - LastFrameMousePos; node_header* Node = GetNodeWithHandle(NodeList, Interaction.NodeHandle); node_connection* Connection = 0; if (IsDraggingNodeInputValue(Interaction)) { Connection = Node->Connections + Interaction.InputValue; Assert(ConnectionIsInput(*Connection)); } else if (IsDraggingNodeOutputValue(Interaction)) { Connection = Node->Connections + Interaction.OutputValue; Assert(ConnectionIsOutput(*Connection)); } Assert(Connection); switch (Connection->Type) { case MemberType_s32: { *Connection->S32ValuePtr += (s32)(MouseDelta.y * .05f); }break; case MemberType_r32: { *Connection->R32ValuePtr += (MouseDelta.y * .05f); }break; case MemberType_v4: { }break; case MemberType_NODE_COLOR_BUFFER: {} break; // NOTE(Peter): Unused for now InvalidDefaultCase; } } } internal void UpdateNodeCalculation (node_header* Node, node_list* NodeList, memory_arena* Permanent, memory_arena* Transient, led* LEDs, sacn_pixel* ColorsInit, s32 LEDCount, r32 DeltaTime); internal void UpdateNodesConnectedUpstream (node_header* Node, node_list* NodeList, memory_arena* Permanent, memory_arena* Transient, led* LEDs, sacn_pixel* ColorsInit, s32 LEDCount, r32 DeltaTime) { for (s32 ConnectionIdx = 0; ConnectionIdx < Node->ConnectionsCount; ConnectionIdx++) { node_connection* Connection = 0; if (ConnectionIsInput(Node->Connections[ConnectionIdx])) { Connection = Node->Connections + ConnectionIdx; if (ConnectionHasUpstreamConnection(*Connection)) { node_header* UpstreamNode = GetNodeWithHandle(NodeList, Connection->UpstreamNodeHandle); if (!UpstreamNode->UpdatedThisFrame) { UpdateNodeCalculation(UpstreamNode, NodeList, Permanent, Transient, LEDs, ColorsInit, LEDCount, DeltaTime); } node_connection UpstreamConnection = UpstreamNode->Connections[Connection->UpstreamNodePortIndex]; switch (Connection->Type) { case MemberType_s32: { *Connection->S32ValuePtr = *UpstreamConnection.S32ValuePtr; }break; case MemberType_r32: { *Connection->R32ValuePtr = *UpstreamConnection.R32ValuePtr; }break; case MemberType_v4: { *Connection->V4ValuePtr = *UpstreamConnection.V4ValuePtr; }break; case MemberType_NODE_COLOR_BUFFER: { *Connection->LEDsValuePtr = *UpstreamConnection.LEDsValuePtr; }break; InvalidDefaultCase; } } } } } internal void UpdateNodeCalculation (node_header* Node, node_list* NodeList, memory_arena* Permanent, memory_arena* Transient, led* LEDs, sacn_pixel* ColorsInit, s32 LEDCount, r32 DeltaTime) { DEBUG_TRACK_FUNCTION; Assert(Node->PersistentData != 0); Assert(Node->Type != NodeType_OutputNode); // NOTE(Peter): Have to subtract one here so that we account for the // NodeType_OutputNode entry in the enum node_specification Spec = NodeSpecifications[Node->Type]; node_struct_member* MemberList = Spec.MemberList; // NOTE(Peter): We do this at the beginning in case there is a node connected to this one // which has a connection that is both an Input and Output. In that case, if UpdatedThisFrame // were not set before hand, the two nodes would pingpong back and forth trying to get // eachother to update. Node->UpdatedThisFrame = true; sacn_pixel* Colors = ColorsInit; UpdateNodesConnectedUpstream(Node, NodeList, Permanent, Transient, LEDs, Colors, LEDCount, DeltaTime); for (s32 ConnectionIdx = 0; ConnectionIdx < Node->ConnectionsCount; ConnectionIdx++) { node_connection Connection = Node->Connections[ConnectionIdx]; // TODO(Peter): We're currently passing in a pointer to the leds array for every single // NODE_COLOR_BUFFER. We shouldn't do that, and just require each data structure that // needs the leds to request that as its own member/parameter. if (Connection.Type == MemberType_NODE_COLOR_BUFFER) { node_led_color_connection* ColorConnection = Connection.LEDsValuePtr; if (!ColorConnection->Colors) { sacn_pixel* ColorsCopy = PushArray(Transient, sacn_pixel, LEDCount); GSMemSet((u8*)ColorsCopy, 0, sizeof(sacn_pixel) * LEDCount); ColorConnection->Colors = ColorsCopy; ColorConnection->LEDs = LEDs; ColorConnection->LEDCount = LEDCount; } } } CallNodeProc(Node, Node->PersistentData, LEDs, LEDCount, DeltaTime); for (s32 ConnectionIdx = 0; ConnectionIdx < Node->ConnectionsCount; ConnectionIdx++) { if (!ConnectionIsOutput(Node, ConnectionIdx)) { continue; } node_connection* Connection = Node->Connections + ConnectionIdx; } } internal void UpdateOutputNodeCalculations (node_header* OutputNode, node_list* NodeList, memory_arena* Permanent, memory_arena* Transient, led* LEDs, sacn_pixel* Colors, s32 LEDCount, r32 DeltaTime) { Assert(OutputNode->Type == NodeType_OutputNode); UpdateNodesConnectedUpstream(OutputNode, NodeList, Permanent, Transient, LEDs, Colors, LEDCount, DeltaTime); node_connection ColorsConnection = OutputNode->Connections[0]; if (ColorsConnection.LEDsValuePtr->Colors) { sacn_pixel* DestPixel = Colors; sacn_pixel* SourcePixel = ColorsConnection.LEDsValuePtr->Colors; for (s32 i = 0; i < LEDCount; i++) { *DestPixel++ = *SourcePixel++; } } } #if 0 // Trying to put updating nodes in terms of connections, rather than nodes. internal void UpdateAllNodesFloodFill (node_list* NodeList, memory_arena* Permanent, memory_arena* Transient, led* LEDs, sacn_pixel* Colors, s32 LEDCount, r32 DeltaTime) { s32 NodesUpdated = 0; s32 DEBUGIterations = 0; while(NodesUpdated < NodeList->TotalUsed) { node_list_iterator NodeIter = GetNodeListIterator(*NodeList); while (NodeIteratorIsValid(NodeIter)) { node_header* Node = NodeIter.At; s32 ConnectionsReady = 0; // Check if all upstream connections have been updated // TODO(Peter): we should move the HasBeenUpdated field into the connections // and have connections push their updates upstream for (s32 c = 0; c < Node->ConnectionsCount; c++) { node_connection* Connection = Node->Connections + c; if (ConnectionIsInput(*Connection) && ConnectionHasUpstreamConnection(*Connection)) { node_header* UpstreamNode = GetNodeWithHandle(NodeList, Connection->UpstreamNodeHandle); if (UpstreamNode->UpdatedThisFrame) { ConnectionsReady += 1; } else { break; } } } if (ConnectionsReady == Node->ConnectionsCount) { } } DEBUGIterations++; } } #endif internal void UpdateAllNodeCalculations (node_list* NodeList, memory_arena* Permanent, memory_arena* Transient, led* LEDs, sacn_pixel* Colors, s32 LEDCount, r32 DeltaTime) { node_list_iterator NodeIter = GetNodeListIterator(*NodeList); while (NodeIteratorIsValid(NodeIter)) { node_header* Node = NodeIter.At; if (!Node->UpdatedThisFrame) { UpdateNodeCalculation(Node, NodeList, Permanent, Transient, LEDs, Colors, LEDCount, DeltaTime); } Next(&NodeIter); } } internal void ClearTransientNodeColorBuffers (node_list* NodeList) { node_list_iterator NodeIter = GetNodeListIterator(*NodeList); while (NodeIteratorIsValid(NodeIter)) { node_header* Node = NodeIter.At; for (s32 ConnectionIdx = 0; ConnectionIdx < Node->ConnectionsCount; ConnectionIdx++) { node_connection* Connection = Node->Connections + ConnectionIdx; if (Connection->Type == MemberType_NODE_COLOR_BUFFER) { Connection->LEDsValuePtr->Colors = 0; } } Next(&NodeIter); } } internal void DrawValueDisplay (render_command_buffer* RenderBuffer, rect Bounds, node_connection Value, bitmap_font* Font) { PushRenderQuad2D(RenderBuffer, Bounds.Min, Bounds.Max, BlackV4); char Buffer[32]; string String = MakeString(Buffer, 32); switch (Value.Type) { case MemberType_s32: { PrintF(&String, "%.*d", 4, *Value.S32ValuePtr); DrawString(RenderBuffer, String, Font, Bounds.Min + v2{2, 2}, WhiteV4); }break; case MemberType_r32: { PrintF(&String, "%.*f", 4, *Value.R32ValuePtr); DrawString(RenderBuffer, String, Font, Bounds.Min + v2{2, 2}, WhiteV4); }break; case MemberType_v4: { PushRenderQuad2D(RenderBuffer, Bounds.Min + v2{2, 2}, Bounds.Max - v2{2, 2}, *Value.V4ValuePtr); }break; case MemberType_NODE_COLOR_BUFFER: { PrintF(&String, "LEDs"); DrawString(RenderBuffer, String, Font, Bounds.Min + v2{2, 2}, WhiteV4); }break; InvalidDefaultCase; } } internal void DrawPort (render_command_buffer* RenderBuffer, rect Bounds, v4 Color) { PushRenderQuad2D(RenderBuffer, Bounds.Min, Bounds.Max, Color); } internal void ResetNodesUpdateState (node_list* NodeList) { node_list_iterator NodeIter = GetNodeListIterator(*NodeList); while (NodeIteratorIsValid(NodeIter)) { node_header* Node = NodeIter.At; Node->UpdatedThisFrame = false; Next(&NodeIter); } } internal b32 SpecificationPassesFilter(string SpecificationName, string SearchString) { return (SearchString.Length == 0 || StringContainsStringCaseInsensitive(SpecificationName, SearchString)); } internal s32 NodeListerConvertHotItemToListIndex (s32 HotItem, u8* NodeSpecificationsList, s32 NodeSpecificationsListCount, string SearchString) { s32 ListIndex = 0; s32 FilteredItemsCount = 0; for (s32 i = 0; i < NodeSpecificationsListCount; i++) { node_specification* Specification = (node_specification*)NodeSpecificationsList + i; string ItemName = MakeString(Specification->Name); b32 PassesFilter = SpecificationPassesFilter(ItemName, SearchString); if (PassesFilter) { if (FilteredItemsCount == HotItem) { break; } FilteredItemsCount++; } ListIndex++; } return ListIndex; } internal string NodeListerGetNodeName (u8* NodeSpecificationsList, s32 NodeSpecificationsListCount, string SearchString, s32 Offset) { s32 FilteredItemsCount = 0; node_specification* Specification = (node_specification*)NodeSpecificationsList; string Result = {}; for (s32 i = 0; i < NodeSpecificationsListCount; i++) { string ItemName = MakeString(Specification->Name); b32 PassesFilter = SpecificationPassesFilter(ItemName, SearchString); if (PassesFilter) { if (FilteredItemsCount == Offset) { Result = ItemName; break; } FilteredItemsCount++; } Specification++; } return Result; }